Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Patricia Mateo-Tomás; Pedro P Olea
Publisher: Public Library of Science (PLoS)
Journal: PLoS ONE
Languages: English
Types: Article
Subjects: Q, R, Research Article, Ecology/Spatial and Landscape Ecology, Ecology/Conservation and Restoration Ecology, Ecology/Ecosystem Ecology, Science, Medicine, Ecology/Population Ecology
BACKGROUND: The knowledge of both potential distribution and habitat suitability is fundamental in spreading species to inform in advance management and conservation planning. After a severe decline in the past decades, the griffon vulture (Gyps fulvus) is now spreading its breeding range towards the northwest in Spain and Europe. Because of its key ecological function, anticipated spatial knowledge is required to inform appropriately both vulture and ecosystem management. METHODOLOGY/FINDINGS: Here we used maximum entropy (Maxent) models to determine the habitat suitability of potential and current breeding distribution of the griffon vulture using presence-only data (N = 124 colonies) in north-western Spain. The most relevant ecological factors shaping this habitat suitability were also identified. The resulting model had a high predictive performance and was able to predict species' historical distribution. 7.5% (approximately 1,850 km(2)) of the study area resulted to be suitable breeding habitat, most of which (approximately 70%) is already occupied by the species. Cliff availability and livestock density, especially of sheep and goats, around 10 km of the colonies were the fundamental factors determining breeding habitat suitability for this species. CONCLUSIONS/SIGNIFICANCE: Griffon vultures could still spread 50-60 km towards the west, increasing their breeding range in 1,782 km(2). According to our results, 7.22% of the area suitable for griffon vulture will be affected by wind farms, so our results could help to better plan wind farm locations. The approach here developed could be useful to inform management of reintroductions and recovery programmes currently being implemented for both the griffon vulture and other threatened vulture species.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Kadoya, T, Ishii, HS, Kikuchi, R, Suda, S, Washitani, I. Using monitoring data gathered by volunteers to predict the potential distribution of the invasive alien bumblebee Bombus terrestris.. Biol Conserv. 2009; 142: 1011-1017
    • Millspaugh, JJ, Thompson, FR. Models for planning wildlife conservation in large landscapes.. 2009
    • Guisan, A, Zimmermann, NE. Predictive habitat distribution models in ecology.. Ecol Model. 2000; 135: 147-186
    • Franklin, J. Mapping species distributions: spatial inference and prediction.. 2009
    • Rhodes, JR, Wiegand, T, McAlpine, CA, Callaghan, J, Lunney, D. Modeling species distributions for improving conservation in semi-urban landscapes: a koala case study.. Conserv Biol. 2006; 20: 449-459
    • Phillips, SJ, Anderson, RP, Schapire, RE. Maximum entropy modeling of species geographic distributions.. Ecol Model. 2006; 190: 231-259
    • Gibson, L, Barrett, B, Burbidge, AH. Dealing with uncertain absences in habitat modelling: a case study of a rare ground-dwelling parrot.. Divers Distrib. 2007; 13: 704-713
    • Elith, J, Graham, CH, Anderson, RP, Dudik, null, M, null, Ferrier, S. Novel methods improve prediction of species' distributions from occurrence data.. Ecography. 2006; 29: 129-151
    • Krebs, CJ. Ecology: The Experimental Analysis of Distribution and Abundance.. Fifth ed.. 2001
    • Wilmers, CC, Crabtree, RL, Smith, DW, Murphy, KM, Getz, WM. Trophic facilitation by introduced top predators: grey wolf subsidies to scavengers in Yellowstone National Park.. J Anim Ecol. 2003; 72: 909-916
    • Sekercioglu, CH. Ecological significance of bird populations.. Handbook of the Birds of the World. 2006; 11: 15-51
    • 2010
    • Donázar, JA, Margalida, A, Carrete, M, Sánchez-Zapata, JA. Too sanitary for vultures.. Science. 2009; 326 (5953): 664
    • Mateo-Tomás, P, Olea, PP. When hunting benefits raptors: a case study of game species and vultures.. Eur J Wildl Res. 2010; 56: 519-528
    • Olea, PP, Mateo-Tomás, P. The role of traditional farming practices in ecosystem conservation: the case of transhumance and vultures.. Biol Conserv. 2009; 142: 1844-1853
    • Deygout, C, Gault, A, Sarrazin, F, Bessa-Gomes, C. Modeling the impact of feeding stations on vulture scavenging service efficiency.. Ecol Model. 2009; 220: 1826-1835
    • Camiña, A, Montelio, E. Griffon vulture Gyps fulvus food shortages in the Ebro Valley (NE Spain) caused by regulations against bovine spongiform encephalopathy (BSE).. Acta Ornithol. 2006; 41: 7-13
    • Donázar, JA, Cortés-Avizana, A, Carrete, M. Dietary shifts in two vultures after the demise of supplementary feeding stations: consequences of the EU sanitary legislation.. Eur J Wildl Res. 2009
    • Gyps fulvus.. 2009
    • Cramp, S, Simmons, KEL. The birds of the Western Palearctic, 2.. 1980
    • Sarrazin, F, Bagnolini, C, Pinna, JL, Danchin, E. Breeding biology during establishment of a reintroduced Griffon Vulture, Gyps fulvus. population.. Ibis. 1996; 138: 315-325
    • Donázar, JA, Fernández, C. Population trends of the Griffon Vulture Gyps fulvus in northern Spain between 1969 and 1989 in relation to conservation measures.. Biol Conserv. 1990; 53: 83-91
    • El buitre en Asturias.. Evolución y censo de 1989.. 1991
    • Grubac, B. The present status of vultures Aegypiinae in central Balkans.. Actas del II Congreso Internacional sobre Aves Carroñeras.. 1997
    • Genero, F, Houston, DC, Piper, SE. Status of the Eurasian Griffon Vulture Gyps fulvus in Italy in 2005.. 2006: 108-115
    • Del Moral, JC. El buitre leonado en España.. 2009
    • Olea, PP, García, J, Falagán, J. Expansión del buitre leonado Gyps fulvus: tamaño de la población y parámetros reproductores en un área de reciente colonización.. Ardeola. 1999; 46: 81-88
    • Arroyo, B, Ferreiro, E, Garza, V. II Censo nacional de buitre leonado, Gyps fulvus.. población, distribución, demografía y conservación . 1990
    • Rodríguez, JP, Brotons, L, Bustamante, J, Seoane, J. The application of predictive modelling of species distribution to biodiversity conservation.. Divers Distrib. 2007; 13: 243-251
    • Mateo-Tomás, P. Conservation and management of vultures in the Cantabrian Mountains.. 2009
    • Gavashelishvili, A, McGrady, MJ. Breeding site selection by bearded vulture, Gypaetus barbatus. and Eurasian griffon, Gyps fulvus. in the Caucasus.. Anim Conserv. 2006; 9: 159-170
    • Xirouchakis, SM, Mylonas, M. Selection of breeding cliffs by Griffon Vultures Gyps fulvus in Crete, Greece.. Acta Ornithol. 2005; 40: 155-161
    • García-Ripollés, C, López-López, P, García-López, F, Aguilar, JM, Verdejo, J. Modelling nesting habitat preferentes of eurasian griffon vulture Gyps fulvus in eastern Iberian peninsula.. Ardeola. 2005; 52: 287-304
    • Elith, J, Leathwick, JR. Species Distribution Models: Ecological Explanation and Prediction Across Space and Time.. Annu Rev Ecol Evol System. 2009; 40: 677-697
    • De Frutos, A, Olea, PP, Vera, R. Analyzing and modelling spatial distribution of summering lesser kestrel: The role of spatial autocorrelation.. Ecol Model. 2007; 200: 33-44
    • Elith, J, Kearney, M, Phillips, S. The art of modelling range-shifting species.. 2010
    • Phillips, SJ, Dudik, M. Modeling of species distributions with MAXENT: new extensions and a comprehensive evaluation.. Ecography. 2008; 31: 161-175
    • Creel, S. Four factors modifying the effect of competition on carnivore population dynamics as illustrated by African wild dogs.. Conserv Biol. 2001; 15: 271-274
    • Fernández, C, Donázar, JA. Griffon Vultures Gyps fulvus occupying eyries of other cliff-nesting raptors.. Bird Study. 1991; 38: 42-44
    • Mateo-Tomás, P, Olea, PP, Fombellida, I. Status, population trend and threats assessment of the globally threatened Egyptian vulture in the Cantabrian Mountains, NW Spain.. Oryx. 2010; 44: 434-440
    • Mateo-Tomás, P, Olea, PP. Combining scales in habitat models to improve conservation planning in an endangered vulture.. Acta Oecol. 2009; 35: 489-498
    • Mateo-Tomás, P, Olea, PP. Diagnosing the causes of territory abandonment by the Endangered Egyptian vulture Neophron percnopterus: the importance of traditional pastoralism and regional conservation.. Oryx. 2010; 44: 424-433
    • Tellería, JL. Overlap between wind power plants and Griffon Vultures Gyps fulvus in Spain.. Bird Study. 2009; 56: 268-271
    • De Lucas, M, Janss, GFE, Whitfield, DP, Ferrer, M. Collision fatality of raptors in wind farms does not depend on raptor abundance.. J Appl Ecol. 2008; 45: 1695-1703
    • El veneno en España, 1990–2005.. 2006
    • Prakash, V, Pain, DJ, Cunningham, AA, Donald, PF, Prakash, N. Catastrophic collapse of Indian white-backed Gyps bengalensis and long-billed Gyps indicus vulture populations.. Biol Conserv. 2003; 19: 381-390
    • Gyps bengalensis.. 2009
    • Gyps indicus.. 2009
    • Gyps tenuirostris.. 2009
    • SEO, null. Primer censo de buitreras, 1979.. Ardeola. 1981; 26-27: 165-312
    • Del Moral, JC, Martí, R. El Buitre Leonado en la Península Ibérica.. 2001
    • Veloz, SD. Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models.. J Biogeogr. 2009; 36: 2290-2299
    • Rebelo, H, Jones, G. Ground validation of presence-only modelling with rare species: a case study on barbastelles Barbastella barbastellus, Chiroptera: Vespertilionidae.. J Appl Ecol. 2010
    • Austin, MP. Spatial prediction of species distribution: an interface between ecological theory and statistical modelling.. Ecol Model. 2002; 157: 101-118
    • Guisan, A, Hofer, U. Predicting reptile distributions at the mesoscale: relation to climate and topography.. J Biogeogr. 2003; 30: 1233-1243
    • DBG, null. Tercer Inventario Forestal Nacional.. 2007
    • INE, null. 2009
    • Elith, J, Graham, CH. Do they? How do they? Why do they differ? - on finding reasons for differing performances of species distribution models.. Ecography. 2009; 32: 66-77
    • Pearce, J, Ferrier, S. Evaluating the predictive performance of habitat models developed using logistic regression.. Ecol Model. 2000; 133: 225-245
    • Sing, T, Sander, O, Beerenwinkel, N, Lengauer, T. ROCR: visualizing classifier performance in R.. Bioinformatics. 2005; 21: 3940-3941
    • Allouche, O, Tsoar, A, Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS).. J Appl Ecol. 2006; 43: 1223-1232
    • Balwin, RA. Use of Maximum Entropy Modeling in Wildlife Research.. Entropy. 2009; 11: 854-866
    • Jiménez-Valverde, A, Lobo, JM. Threshold criteria for conversion of probability of species presence to either–or presence–absence.. Acta Oecol. 2007; 31: 361-369
    • R: A language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria.. 2009
    • Legendre, P, Fortin, MJ. Spatial pattern and ecological analysis.. Vegetatio. 1989; 80: 107-138
    • Diniz, JAF, Bini, LM, Hawkins, BA. Spatial autocorrelation and red herrings in geographical ecology.. Global Ecol Biogeogr. 2003; 12: 53-64
    • Heikkinen, RK, Luoto, M, Virkkala, R, Rainio, K. Effects of habitat cover, landscape structure and spatial variables on the abundance of birds in an agricultural–forest mosaic.. J Appl Ecol. 2004; 41: 24-835
    • Rangel, T, Diniz-Filho, JAF, Bini, LM. Towards an integrated computational tool for spatial analysis in macroecology and biogeography.. Global Ecol Biogeogr. 2006; 15: 321-327
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article