Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Wetzel, Andrew R.; Hopkins, Philip F.; Kim, Ji-Hoon; Faucher-Giguère, Claude-André; Kereš, Dušan; Quataert, Eliot (2016)
Publisher: American Astronomical Society
Types: Article
Subjects: theory [cosmology], dwarf [galaxies], formation [galaxies], star formation [galaxies], numerical [methods], Local Group, Astrophysics - Astrophysics of Galaxies

Classified by OpenAIRE into

arxiv: Astrophysics::Cosmology and Extragalactic Astrophysics, Astrophysics::Galaxy Astrophysics, Astrophysics::Earth and Planetary Astrophysics
� 2016. The American Astronomical Society. All rights reserved. Low-mass "dwarf" galaxies represent the most significant challenges to the cold dark matter (CDM) model of cosmological structure formation. Because these faint galaxies are (best) observed within the Local Group (LG) of the Milky Way (MW) and Andromeda (M31), understanding their formation in such an environment is critical. We present first results from the Latte Project: the Milky Way on Feedback in Realistic Environments (FIRE). This simulation models the formation of an MW-mass galaxy to z = 0 within ACDM cosmology, including dark matter, gas, and stars at unprecedented resolution: baryon particle mass of 7070 M⊙with gas kernel/softening that adapts down to 1 pc (with a median of 25-60 pc at z = 0). Latte was simulated using the GIZMO code with a mesh-free method for accurate hydrodynamics and the FIRE-2 model for star formation and explicit feedback within a multi-phase interstellar medium. For the first time, Latte self-consistently resolves the spatial scales corresponding to half-light radii of dwarf galaxies that form around an MW-mass host down to Mstar ≳ 10 M⊙.Lattes population of dwarf galaxies agrees with the LG across a broad range of properties: (1) distributions of stellar masses and stellar velocity dispersions (dynamical masses), including their joint relation; (2) the mass- metallicity relation; and (3) diverse range of star formation histories, including their mass dependence. Thus, Latte produces a realistic population of dwarf galaxies at Mstar ≳ 10 M⊙. that does not suffer from the "missing satellites" or "too big to fail" problems of small-scale structure formation. We conclude that baryonic physics can reconcile observed dwarf galaxies with standard ACDM cosmology.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • NSF | Collaborative Research: CDS...
  • NSF | Toward physically-predictiv...
  • NSF | Collaborative Research: CDS...
  • NSF | Collaborative Research: CDS...
  • NSF | CAREER: The Ties that (Un)B...

Cite this article