LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: HAL CCSD
Languages: English
Types: Conference object
Subjects: [INFO.INFO-ES] Computer Science [cs]/Embedded Systems, [INFO.INFO-NI] Computer Science [cs]/Networking and Internet Architecture [cs.NI], [INFO.INFO-AR] Computer Science [cs]/Hardware Architecture [cs.AR], Système d'exploitation, [INFO.INFO-OS] Computer Science [cs]/Operating Systems [cs.OS]
National audience; Spacewire is a real-time communication network for use onboard satellites. It has been designed to transmit both payload and control/command data. To guarantee that communications respect the real-time constraints, designers use tools to compute the worst-case end-to-end delays. Among these tools, recursive flow analysis and Network Calculus approaches have been studied. This paper proposes to use the model-checking approach based on timed automata to compute the exact worstcase end-to-end delays and two case studies are presented.

Share - Bookmark

Cite this article