LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Devauchelle , O.; PETROFF , A. P.; LOBKOVSKY , A. E.; Rothman , D. H. (2011)
Publisher: Cambridge University Press (CUP)
Languages: English
Types: Article
Subjects: [ PHYS ] Physics [physics]
International audience; We propose a simple theory for the longitudinal profile of channels incised by groundwater flow. The aquifer surrounding the stream is represented in two dimensions through Darcy's law and the Dupuit approximation. The model is based on the assumption that, everywhere in the stream, the shear stress exerted on the sediment by the flow is close to the minimal intensity required to displace a sand grain. Because of the coupling of the stream discharge with the water table elevation in the neighbourhood of the channel head, the stream elevation decreases as the distance from the stream's tip with an exponent of 2/3. Field measurements of steephead ravines in the Florida Panhandle conform well to this prediction.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Abrams, D. M., Lobkovsky, A. E., Petroff, A. P., Straub, K. M., McElroy, B., Mohrig, D. C., Kudrolli, A. & Rothman, D. H. 2009 Growth laws for channel networks incised by groundwater ow. Nature Geoscience 2, 193{196.
    • Bear, J. 1988 Dynamics of uids in porous media . Dover Publications.
    • Chanson, H. 2004 The hydraulics of open channel ow: an introduction , 2nd edn. Elsevier Butterworth-Heinemann.
    • Churchill, R. V. & Brown, J. W. 1984 Complex variables and applications . McGraw-Hill Book Company.
    • Dade, W. B. 2000 Grain size, sediment transport and alluvial channel pattern. Geomorphology 35 (1-2), 119{126.
    • Derrida, B. & Hakim, V. 1992 Needle models of Laplacian growth. Physical Review A 45 (12), 8759{8765.
    • Devauchelle, O., Malverti, L., Lajeunesse, E., Lagree, P.Y., Josserand, C. & ThuLam, K.D.N. 2009 Stability of bedforms in laminar ows with free surface: from bars to ripples. Journal of Fluid Mechanics 642, 329{348.
    • Dunne, T. 1980 Formation and controls of channel networks. Progress in Physical Geography 4 (2), 211.
    • Dupuit, J. 1863 Etudes theoriques et pratiques sur le mouvement des eaux dans les canaux decouverts et a travers les terrains permeables , 2nd edn. Paris: Dunod.
    • Fourriere, A. 2009 Morphodynamique des rivieres: Selection de la largeur, rides et dunes. Ph.D. thesis, Universite Paris Diderot.
    • Fowler, A. C., Kopteva, N. & Oakley, C. 2007 The formation of river channels. SIAM Journal on Applied Mathematics 67 (4), 1016{1040.
    • Fox, G. A., Chu-Agor, M. L. M. & Wilson, G. V. 2007 Erosion of Noncohesive Sediment by Ground Water Seepage: Lysimeter Experiments and Stability Modeling. Soil Science Society of America Journal 71 (6), 1822{1830.
    • Gilbert, G. K. 1877 Report on the Geology of the Henry Mountains . Washington: Government Printing O ce.
    • Henderson, F. M. 1961 Stability of alluvial channels. J. Hydraulics Div., ASCE 87, 109{138.
    • Higgins, C. G. 1982 Drainage systems developed by sapping on Earth and Mars. Geology 10 (3), 147{152.
    • Howard, A.D. 1988 Groundwater sapping experiments and modeling. Sapping Features of the Colorado Plateau: A Comparative Planetary Geology Field Guide pp. 71{83.
    • Howard, A. D. & McLane III, C. F. 1988 Erosion of cohesionless sediment by groundwater seepage. Water resources research 24 (10).
    • Katul, G., Wiberg, P., Albertson, J. & Hornberger, G. 2002 A mixing layer theory for ow resistance in shallow streams. Water Resources Research 38 (11), 1250.
    • Kochel, R. C. & Piper, J. F. 1986 Morphology of large valleys on Hawaii: Evidence for groundwater sapping and comparisons with Martian valleys. Journal of Geophysical Research 91 (B13), E175{E192.
    • Laity, J. E. & Malin, M. C. 1985 Sapping processes and the development of theater-headed valley networks on the Colorado Plateau. Geological Society of America Bulletin 96 (2), 203{217.
    • Lamb, M. P., Dietrich, W. E., Aciego, S. M., DePaolo, D. J. & Manga, M. 2008 Formation of Box Canyon, Idaho, by mega ood: Implications for seepage erosion on Earth and Mars. Science 320 (5879), 1067{1070.
    • Lamb, M. P., Howard, A. D., Johnson, J., Whipple, K. X., Dietrich, W. E. & Perron, J. T. 2006 Can springs cut canyons into rock? J. Geophys. Res 111, E07002.
    • Lane, E. W. 1955 Design of stable channels. Transactions of the American Society of Civil Engineers 120, 1234{1260.
    • Leopold, L. B. & Wolman, M. G. 1957 River channel patterns: braided, meandering, and straight. Geological Survey Professional Paper 282 (B), 39{85.
    • Lobkovsky, A. E., Orpe, A. V., Molloy, R., Kudrolli, A. & Rothman, D. H. 2008 Erosion of a granular bed driven by laminar uid ow. Journal of Fluid Mechanics 605, 47{58.
    • Paola, C., Heller, P. L. & Angevine, C. L. 1992 The large-scale dynamics of grain-size variation in alluvial basins, 1: Theory. Basin Research 4, 73{73.
    • Parker, G. 1978 Self-formed straight rivers with equilibrium banks and mobile bed. Part 2. The gravel river. J. Fluid Mech 89 (1), 127{146.
    • Perron, J. T., Kirchner, J. W. & Dietrich, W. E. 2009 Formation of evenly spaced ridges and valleys. Nature 460 (7254), 502{505.
    • Petroff, A. P., Devauchelle, O., Abrams, D., Lobkovsky, A., Kudrolli, A. & Rothman, D. H. 2009 Physical origin of amphitheater shaped valley heads. in progress .
    • Rice, S. P. & Church, M. 2001 Longitudinal pro les in simple alluvial systems. Water resources research 37 (2), 417{426.
    • Savenije, H. H. G. 2003 The width of a bankfull channel; Lacey's formula explained. Journal of Hydrology 276 (1-4), 176{183.
    • Schmidt, W. 1985 Alum blu , liberty county, orida. Open File Report 9. Florida Geological Survey.
    • Schumm, S. A., Boyd, K. F., Wolff, C. G. & Spitz, W. J. 1995 A ground-water sapping landscape in the Florida Panhandle. Geomorphology 12 (4), 281{297.
    • Sinha, S. K. & Parker, G. 1996 Causes of concavity in longitudinal pro les of rivers. Water Resources Research 32 (5), 1417{1428.
    • Sklar, L. S. & Dietrich, W. E. 2008 Implications of the saltation-abrasion bedrock incision model for steady-state river longitudinal pro le relief and concavity. Earth Surface Processes and Landforms 33 (7), 1129{1151.
    • Snow, R. S. & Slingerland, R. L. 1987 Mathematical modeling of graded river pro les. The Journal of Geology 95 (1), 15{33.
    • Whipple, K. X. 2001 Fluvial landscape response time: how plausible is steady-state denudation? American Journal of Science 301 (4-5), 313{325.
    • Wolman, M. G. & Miller, J. P. 1960 Magnitude and frequency of forces in geomorphic processes. The Journal of Geology 68 (1), 54{74.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok