LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Lavenus, Sandrine; Louarn, Guy; Layrolle, Pierre (2010)
Publisher: Hindawi Publishing Corporation
Journal: International Journal of Biomaterials
Languages: English
Types: Article
Subjects: Biotechnology, Review Article, Article Subject, TP248.13-248.65
The long-term clinical success of dental implants is related to their early osseointegration. This paper reviews the different steps of the interactions between biological fluids, cells, tissues, and surfaces of implants. Immediately following implantation, implants are in contact with proteins and platelets from blood. The differentiation of mesenchymal stem cells will then condition the peri-implant tissue healing. Direct bone-to-implant contact is desired for a biomechanical anchoring of implants to bone rather than fibrous tissue encapsulation. Surfaces properties such as chemistry and roughness play a determinant role in these biological interactions. Physicochemical features in the nanometer range may ultimately control the adsorption of proteins as well as the adhesion and differentiation of cells. Nanotechnologies are increasingly used for surface modifications of dental implants. Another approach to enhance osseointegration is the application of thin calcium phosphate (CaP) coatings. Bioactive CaP nanocrystals deposited on titanium implants are resorbable and stimulate bone apposition and healing. Future nanometer-controlled surfaces may ultimately direct the nature of peri-implant tissues and improve their clinical success rate.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Rozé, J., Babu, S., Saffarzadeh, A., Gayet-Delacroix, M., Hoornaert, A., Layrolle, P.. Correlating implant stability to bone structure. Clinical Oral Implants Research. 2009; 20 (10): 1140-1145
    • Le Guéhennec, L., Soueidan, A., Layrolle, P., Amouriq, Y.. Surface treatments of titanium dental implants for rapid osseointegration. Dental Materials. 2007; 23 (7): 844-854
    • Lavenus, S., Ricquier, J.-C., Louarn, G., Layrolle, P.. Cell interaction with nanopatterned surface of implants. Nanomedicine. 2010; 5 (6): 937-947
    • Geesink, R. G. T.. Osteoconductive coatings for total joint arthroplasty. Clinical Orthopaedics and Related Research. 2002 (395): 53-65
    • Leeuwenburgh, S., Layrolle, P., Barrre, F., De Bruijn, J., Schoonman, J., Van Blitterswijk, C. A., De Groot, K.. Osteoclastic resorption of biomimetic calcium phosphate coatings in vitro. Journal of Biomedical Materials Research. 2001; 56 (2): 208-215
    • Geesink, R. G. T., De Groot, K., Klein, C. P. A. T.. Chemical implant fixation using hydroxyl-apatite coatings. The development of a human total hip prosthesis for chemical fixation to bone using hydroxyl-apatite coatings on titanium substrates. Clinical Orthopaedics and Related Research. 1987 (225): 147-170
    • Shalabi, M. M., Wolke, J. G., Jansen, J. A.. The effects of implant surface roughness and surgical technique on implant fixation in an in vitro model. Clinical Oral Implants Research. 2006; 17 (2): 172-178
    • Esposito, M., Hirsch, J. M., Lekholm, U., Thomsen, P.. Biological factors contributing to failures of osseointegrated oral implants. (I). Success criteria and epidemiology. European Journal of Oral Sciences. 1998; 106 (1): 527-551
    • Esposito, M., Hirsch, J. M., Lekholm, U., Thomsen, P.. Biological factors contributing to failures of osseointegrated oral implants: (II). Etiopathogenesis. European Journal of Oral Sciences. 1998; 106 (3): 721-764
    • Müeller, W.-D., Gross, U., Fritz, T., Voigt, C., Franklin, K. B., Fischer, P., Berger, G., Rogaschewski, S., Lange, K.-P.. Evaluation of the interface between bone and titanium surfaces being blasted by aluminium oxide or bioceramic particles. Clinical Oral Implants Research. 2003; 14 (3): 349-356
    • Le Guehennec, L., Lopez-Heredia, M. A., Enkel, B., Weiss, P., Amouriq, Y., Layrolle, P.. Osteoblastic cell behaviour on different titanium implant surfaces. Acta Biomaterialia. 2008; 4 (3): 535-543
    • Citeau, A., Guicheux, J., Vinatier, C., Layrolle, P., Nguyen, T. P., Pilet, P., Daculsi, G.. In vitro biological effects of titanium rough surface obtained by calcium phosphate grid blasting. Biomaterials. 2005; 26 (2): 157-165
    • Oh, S., Brammer, K. S., Li, Y. S. J., Teng, D., Engler, A. J., Chien, S., Jin, S.. Stem cell fate dictated solely by altered nanotube dimension. Proceedings of the National Academy of Sciences of the United States of America. 2009; 106 (7): 2130-2135
    • Zhang, L., Han, Y.. Effect of nanostructured titanium on anodization growth of self-organized TiO2 nanotubes. Nanotechnology. 2010; 21 (5)
    • Shankar, K., Mor, G. K., Prakasam, H. E., Yoriya, S., Paulose, M., Varghese, O. K., Grimes, C. A.. Highly-ordered TiO2 nanotube arrays up to 220 μm in length: use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology. 2007; 18 (6)-11
    • Kang, S. H., Kim, H. S., Kim, J. Y., Sung, Y. E.. An investigation on electron behavior employing vertically-aligned TiO2 nanotube electrodes for dye-sensitized solar cells. Nanotechnology. 2009; 20 (35)-6
    • Brammer, K. S., Oh, S., Cobb, C. J., Bjursten, L. M., Heyde, H. V. D., Jin, S.. Improved bone-forming functionality on diameter-controlled TiO2 nanotube surface. Acta Biomaterialia. 2009; 5 (8): 3215-3223
    • Geurs, N. C., Jeffcoat, R. L., McGlumphy, E. A., Reddy, M. S., Jeffcoat, M. K.. Influence of implant geometry and surface characteristics on progressive osseointegration. International Journal of Oral and Maxillofacial Implants. 2002; 17 (6): 811-815
    • Davies, J. E.. Understanding peri-implant endosseous healing. Journal of Dental Education. 2003; 67 (8): 932-949
    • Le Guehennec, L., Goyenvalle, E., Lopez-Heredia, M. A., Weiss, P., Amouriq, Y., Layrolle, P.. Histomorphometric analysis of the osseointegration of four different implant surfaces in the femoral epiphyses of rabbits. Clinical Oral Implants Research. 2008; 19 (11): 1103-1110
    • Lopez-Heredia, M. A., Weiss, P., Layrolle, P.. An electrodeposition method of calcium phosphate coatings on titanium alloy. Journal of Materials Science: Materials in Medicine. 2007; 18 (2): 381-390
    • LeGeros, R. Z.. Properties of osteoconductive biomaterials: calcium phosphates. Clinical Orthopaedics and Related Research. 2002 (395): 81-98
    • Miller, R., Guo, Z., Vogler, E. A., Siedlecki, C. A.. Plasma coagulation response to surfaces with nanoscale chemical heterogeneity. Biomaterials. 2006; 27 (2): 208-215
    • Sawase, T., Jimbo, R., Baba, K., Shibata, Y., Ikeda, T., Atsuta, M.. Photo-induced hydrophilicity enhances initial cell behavior and early bone apposition. Clinical Oral Implants Research. 2008; 19 (5): 491-496
    • Balasundaram, G., Sato, M., Webster, T. J.. Using hydroxyapatite nanoparticles and decreased crystallinity to promote osteoblast adhesion similar to functionalizing with RGD. Biomaterials. 2006; 27 (14): 2798-2805
    • Weibrich, G., Hansen, T., Kleis, W., Buch, R., Hitzler, W. E.. Effect of platelet concentration in platelet-rich plasma on peri-implant bone regeneration. Bone. 2004; 34 (4): 665-671
    • Richter, W.. Mesenchymal stem cells and cartilage in situ regeneration. Journal of Internal Medicine. 2009; 266 (4): 390-405
    • Ichim, T. E., Alexandrescu, D. T., Solano, F., Lara, F., Campion, R. D. N., Paris, E., Woods, E. J., Murphy, M. P., Dasanu, C. A., Patel, A. N., Marleau, A. M., Leal, A., Riordan, N. H.. Mesenchymal stem cells as anti-inflammatories: Implications for treatment of Duchenne muscular dystrophy. Cellular Immunology. 2010; 260 (2): 75-82
    • Friedenstein, A. J., Petrakova, K. V., Kurolesova, A. I., Frolova, G. P.. Heterotopic of bone marrow: analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation. 1968; 6 (2): 230-247
    • Zannettino, A. C. W., Paton, S., Arthur, A., Khor, F., Itescu, S., Gimble, J. M., Gronthos, S.. Multipotential human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo. Journal of Cellular Physiology. 2008; 214 (2): 413-421
    • Wickham, M. Q., Erickson, G. R., Gimble, J. M., Vail, T. P., Guilak, F.. Multipotent stromal cells derived from the infrapatellar fat pad of the knee. Clinical Orthopaedics and Related Research. 2003 (412): 196-212
    • Hoogduijn, M. J., Crop, M. J., Peeters, A. M. A., Van Osch, G. J. V. M., Balk, A. H. M. M., Ijzermans, J. N. M., Weimar, W., Baan, C. C.. Human heart, spleen, and perirenal fat-derived mesenchymal stem cells have immunomodulatory capacities. Stem Cells and Development. 2007; 16 (4): 597-604
    • Jo, Y. Y., Lee, H. J., Kook, S. Y., Choung, H. W., Park, J. Y., Chung, J. H., Choung, Y. H., Kim, E. S., Yang, H. C., Choung, P. H.. Isolation and characterization of postnatal stem cells from human dental tissues. Tissue Engineering. 2007; 13 (4): 767-773
    • He, Q., Wan, C., Li, G.. Concise review: multipotent mesenchymal stromal cells in blood. Stem Cells. 2007; 25 (1): 69-77
    • Oh, W., Kim, D. S., Yang, Y. S., Lee, J. K.. Immunological properties of umbilical cord blood-derived mesenchymal stromal cells. Cellular Immunology. 2008; 251 (2): 116-123
    • Morganstein, D. L., Wu, P., Mane, M. R., Fisk, N. M., White, R., Parker, M. G.. Human fetal mesenchymal stem cells differentiate into brown and white adipocytes: a role for ERRα in human UCP1 expression. Cell Research. 2010; 20 (4): 434-444
    • Marinucci, L., Balloni, S., Becchetti, E., Bistoni, G., Calvi, E. M., Lumare, E., Ederli, F., Locci, P.. Effects of hydroxyapatite and Biostite® on osteogenic induction of hMSC. Annals of Biomedical Engineering. 2010; 38 (3): 640-648
    • Lepski, G., Jannes, C. E., Maciaczyk, J., Papazoglou, A., Mehlhorn, A. T., Kaiser, S., Teixeira, M. J., Marie, S. K. N., Bischofberger, J., Nikkhah, G.. Limited Ca2+ and PKA-pathway dependent neurogenic differentiation of human adult mesenchymal stem cells as compared to fetal neuronal stem cells. Experimental Cell Research. 2010; 316 (2): 216-231
    • Engler, A. J., Sen, S., Sweeney, H. L., Discher, D. E.. Matrix elasticity directs stem cell lineage specification. Cell. 2006; 126 (4): 677-689
    • Liu, Y., Yan, X., Sun, Z., Chen, B., Han, Q., Li, J., Zhao, R. C.. Flk-1+ adipose-derived mesenchymal stem cells differentiate into skeletal muscle satellite cells and ameliorate muscular dystrophy in MDX Mice. Stem Cells and Development. 2007; 16 (5): 695-706
    • Chivu, M., Dima, S. O., Stancu, C. I., Dobrea, C., Uscatescu, V., Necula, L. G., Bleotu, C., Tanase, C., Albulescu, R., Ardeleanu, C., Popescu, I.. In vitro hepatic differentiation of human bone marrow mesenchymal stem cells under differential exposure to liver-specific factors. Translational Research. 2009; 154 (3): 122-132
    • Agis, H., Kandler, B., Fischer, M. B., Watzek, G., Gruber, R.. Activated platelets increase fibrinolysis of mesenchymal progenitor cells. Journal of Orthopaedic Research. 2009; 27 (7): 972-980
    • Vogel, J. P., Szalay, K., Geiger, F., Kramer, M., Richter, W., Kasten, P.. Platelet-rich plasma improves expansion of human mesenchymal stem cells and retains differentiation capacity and in vivo bone formation in calcium phosphate ceramics. Platelets. 2006; 17 (7): 462-469
    • Mishima, Y., Lotz, M.. Chemotaxis of human articular chondrocytes and mesenchymal stem cells. Journal of Orthopaedic Research. 2008; 26 (10): 1407-1412
    • Ozaki, Y., Nishimura, M., Sekiya, K., Suehiro, F., Kanawa, M., Nikawa, H., Hamada, T., Kato, Y.. Comprehensive analysis of chemotactic factors for bone marrow mesenchymal stem cells. Stem Cells and Development. 2007; 16 (1): 119-129
    • Kuznetsov, S. A., Friedenstein, A. J., Robey, P. G.. Factors required for bone marrow stromal fibroblast colony formation in vitro. British Journal of Haematology. 1997; 97 (3): 561-570
    • Fiedler, J., Leucht, F., Waltenberger, J., Dehio, C., Brenner, R. E.. VEGF-A and PlGF-1 stimulate chemotactic migration of human mesenchymal progenitor cells. Biochemical and Biophysical Research Communications. 2005; 334 (2): 561-568
    • Jian, H., Shen, X., Liu, I., Semenov, M., He, XI., Wang, X. F.. Smad3-dependent nuclear translocation of β-catenin is required for TGF-β1-induced proliferation of bone marrow-derived adult human mesenchymal stem cells. Genes and Development. 2006; 20 (6): 666-674
    • Catelas, I., Dwyer, J. F., Helgerson, S.. Controlled release of bioactive transforming growth factor beta-1 from fibrin gels in vitro. Tissue Engineering C. 2008; 14 (2): 119-128
    • Wong, C., Inman, E., Spaethe, R., Helgerson, S.. Fibrin-based biomaterials to deliver human growth factors. Thrombosis and Haemostasis. 2003; 89 (3): 573-582
    • Mosesson, M. W.. Fibrinogen and fibrin structure and functions. Journal of Thrombosis and Haemostasis. 2005; 3 (8): 1894-1904
    • Rock, G., Neurath, D., Lu, M., Alharbi, A., Freedman, M.. The contribution of platelets in the production of cryoprecipitates for use in a fibrin glue. Vox Sanguinis. 2006; 91 (3): 252-255
    • Catelas, I., Sese, N., Wu, B. M., Dunn, J. C. Y., Helgerson, S., Tawil, B.. Human mesenchymal stem cell proliferation and osteogenic differentiation in fibrin gels in vitro. Tissue Engineering. 2006; 12 (8): 2385-2396
    • Schildhauer, T. A., Seybold, D., Geßmann, J., Muhr, G., Köller, M.. Fixation of porous calcium phosphate with expanded bone marrow cells using an autologous plasma clot. Materialwissenschaft und Werkstofftechnik. 2007; 38 (12): 1012-1014
    • Hobkirk, J. A.. Progress in implant research. International Dental Journal. 1983; 33 (4): 341-349
    • Eisenbarth, E., Meyle, J., Nachtigall, W., Breme, J.. Influence of the surface structure of titanium materials on the adhesion of fibroblasts. Biomaterials. 1996; 17 (14): 1399-1403
    • Cohen, A., Liu-Synder, P., Storey, D., Webster, T. J.. Decreased fibroblast and increased osteoblast functions on ionic plasma deposited nanostructured Ti coatings. Nanoscale Research Letters. 2007; 2 (8): 385-390
    • Miller, D., Vance, R., Thapa, A., Webster, T., Haberstroch, K.. Comparaison of fibroblast and vascular cell adhesion to nano structured poly(lactic co glycolic acid) films. Applied Bionics and Biochemics. 2005; 2 (1): 1-7
    • Streicher, R. M., Schmidt, M., Fiorito, S.. Nanosurfaces and nanostructures for artificial orthopedic implants. Nanomedicine. 2007; 2 (6): 861-874
    • Puckett, S., Pareta, R., Webster, T. J.. Nano rough micron patterned titanium for directing osteoblast morphology and adhesion. International Journal of Nanomedicine. 2008; 3 (2): 229-241
    • Yao, C., Slamovich, E. B., Webster, T. J.. Enhanced osteoblast functions on anodized titanium with nanotube-like structures. Journal of Biomedical Materials Research A. 2008; 85 (1): 157-166
    • Frosch, K. H., Barvencik, F., Viereck, V., Lohmann, C. H., Dresing, K., Breme, J., Brunner, E., Stürmer, K. M.. Growth behavior, matrix production, and gene expression of human osteoblasts in defined cylindrical titanium channels. Journal of Biomedical Materials Research A. 2004; 68 (2): 325-334
    • Oh, S. H., Finõnes, R. R., Daraio, C., Chen, L. H., Jin, S.. Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. Biomaterials. 2005; 26 (24): 4938-4943
    • Brånemark, P. I., Adell, R., Albrektsson, T., Lekholm, U., Lundkvist, S., Rockler, B.. Osseointegrated titanium fixtures in the treatment of edentulousness. Biomaterials. 1983; 4 (1): 25-28
    • Kubo, K., Tsukimura, N., Iwasa, F., Ueno, T., Saruwatari, L., Aita, H., Chiou, W. A., Ogawa, T.. Cellular behavior on TiO2 nanonodular structures in a micro-to-nanoscale hierarchy model. Biomaterials. 2009; 30 (29): 5319-5329
    • LeGeros, R. Z., Craig, R. G.. Strategies to affect bone remodeling: osteointegration. Journal of Bone and Mineral Research. 1993; 8 (2): S583-S596
    • Pilliar, R. M.. Cementless implant fixation-toward improved reliability. Orthopedic Clinics of North America. 2005; 36 (1): 113-119
    • Ogawa, T., Saruwatari, L., Takeuchi, K., Aita, H., Ohno, N.. Ti nano-nodular structuring for bone integration and regeneration. Journal of Dental Research. 2008; 87 (8): 751-756
    • Boyan, B. D., Schwartz, Z., Hambleton, J. C.. Response of bone and cartilage cells to biomaterials in vivo and in vitro. The Journal of Oral Implantology. 1993; 19 (2): 116-136
    • Kohavi, D., Schwartzt, Z., Amir, D., Mai, C. M., Gross, U., Sela, J.. Effect of titanium implants on primary mineralization following 6 and 14 days of rat tibial healing. Biomaterials. 1992; 13 (4): 255-260
    • Jeffcoat, M. K., McGlumphy, E. A., Reddy, M. S., Geurs, N. C., Proskin, H. M.. A comparison of hydroxyapatite (HA)-coated threaded, HA-coated cylindric, and titanium threaded endosseous dental implants. International Journal of Oral and Maxillofacial Implants. 2003; 18 (3): 406-410
    • McGlumphy, E. A., Peterson, L. J., Larsen, P. E., Jeffcoat, M. K.. Prospective study of 429 hydroxyapatite-coated cylindric omniloc implants placed in 121 patients. International Journal of Oral and Maxillofacial Implants. 2003; 18 (1): 82-92
    • Liu, Y., De Groot, K., Hunziker, E. B.. BMP-2 liberated from biomimetic implant coatings induces and sustains direct ossification in an ectopic rat model. Bone. 2005; 36 (5): 745-757
  • No related research data.
  • No similar publications.