LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Esterhuizen, Johan; Rayaisse, Jean Baptiste; Tirados, Inaki; Mpiana, Serge; Solano, Philippe; Vale, Glyn A.; Lehane, Mike; Torr, Stephen J. (2011)
Publisher: Public Library of Science
Journal: PLoS Neglected Tropical Diseases
Languages: English
Types: Article
Subjects: RC955-962, Research Article, Biology, qx_650, RA1-1270, Public aspects of medicine, wc_705, qx_505, Arctic medicine. Tropical medicine, S1, RA
Author Summary Sleeping Sickness (Human African Trypanosomiasis) is a serious threat to health and development in sub-Saharan Africa. Currently there are no vaccines or prophylactic drugs available to prevent contraction of the disease. Consequently vector control is the only method of disease prevention. In many areas, especially those lacking high densities of cattle, the only control option for routine use against tsetse flies are insecticide-treated targets or biconical traps. However, these methods in their current form are often too expensive for routine use against the riverine tsetse species that are the major vectors of sleeping sickness. Our aim is to develop a more cost-effective device than those currently available. Working on four species of tsetse fly we have shown that a small 25×25 cm target with adjacent flanking net was up to 38x more cost-effective at killing tsetse flies than existing devices. These findings suggest that this new technology may make vector control in HAT foci an affordable option.