Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Boudin , Laurent; Weynans , Lisl (2008)
Publisher: EDP Sciences
Languages: English
Types: Article
Subjects: spray, [ MATH.MATH-NA ] Mathematics [math]/Numerical Analysis [math.NA], upper airways, droplet impingement

Classified by OpenAIRE into

mesheuropmc: complex mixtures
9 pages; ESAIM proceedings; We here address the modelling of an aerosol hitting the walls of the airways or an endotracheal tube used for a mechanical ventilation, and the possible creation of secondary droplets that may follow. We present a kinetic modelling of the spray-wall interaction and propose a boundary term that takes into account the possible formation of secondary droplets. Next we answer the following question: when, modelling the delivery of solute therapeutic aerosols, is it necessary to take into account the apparition of secondary droplets? A study of empirical models of drop-wall interaction allows us to conclude that in usual respiratory conditions, no secondary droplets appear. Finally, we perform numerical simulations of an aerosol delivered in an endotracheal tube, in the mechanical ventilation case. The idea is to compare our numerical results to in silico experiments from aerosols specialists. We study the trajectories and the deposition locations of spray droplets.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] Freefem++, finite elements software, http://www.freefem.org/ff++/.
    • [2] Medit, scientific visualization software, http://www.ann.jussieu.fr/ frey/logiciels/medit.html.
    • [3] A. A. Amsden. Kiva-3V: A block-structured Kiva program for engines with vertical or canted valves. Technical report, Los Alamos National Laboratory Report LA-13313-MS, Los Alamos, NM, 1997.
    • [4] C. Baranger. Modelling of oscillations, breakup and collisions for droplets: the establishment of kernels for the T.A.B. model. Math. Models Methods Appl. Sci., 14(5):775-794, 2004.
    • [5] C. Baranger, L. Boudin, P.-E. Jabin, and S. Mancini. A modeling of biospray for the upper airways. In CEMRACS 2004- mathematics and applications to biology and medicine, volume 14 of ESAIM Proc., pages 41-47 (electronic). EDP Sci., Les Ulis, 2005.
    • [6] C. Baranger and L. Desvillettes. Coupling Euler and Vlasov equations in the context of sprays: the local-in-time, classical solutions. J. Hyperbolic Differ. Equ., 3(1):1-26, 2006.
    • [7] G. E. Cossali, G. Brunello, A. Coghe, and M. Marengo. Impact of a single drop on a liquid film: experimental analysis and comparison with empirical models. Italian Congress of Thermofluid Dynamics UIT, Ferrara, 30 june - 2 July 1999.
    • [8] G. E. Cossali, A. Coghe, and M. Marengo. The impact of a single drop on a wetted solid surface. Exp. Fluids, 22:463-472, 1997.
    • [9] Q. D´erumeaux and J. Crest. Mod´elisation du d´epoˆt de particules dans les bronches. Technical report, E´cole Polytechnique, 2007.
    • [10] T. Duparque. Master report, universit´e de Tours, 2007.
    • [11] T. Gemci, T. E. Corcoran, and N. Chigier. A numerical and experimental study of spray dynamics in a simple throat model. Aerosol Sci. Technol., 36:18-38, 2002.
    • [12] C. Grandmont, Y. Maday, and B. Maury. A multiscale/multimodel approach of the respiration tree. In New trends in continuum mechanics, volume 3 of Theta Ser. Adv. Math., pages 147-157. Theta, Bucharest, 2005.
    • [13] K. Hamdache. Global existence and large time behaviour of solutions for the Vlasov-Stokes equations. Japan J. Indust. Appl. Math., 15(1):51-74, 1998.
    • [14] J. Hylkema and P. Villedieu. A random particle method to simulate coalescence phenomena in dense liquid sprays. In Proc. 16th Int. Conf. on Num. Meth. in Fluid Dyn., volume 515 of Lecture Notes in Physics. Springer-Verlag, 1999, 1999.
    • [15] J. Hylkema and Ph. Villedieu. Mod´elisation cin´etique et simulation num´erique des collisions entre gouttelettes d'alumine dans un propulseur a` poudre. In Y. Fabignon et P. Marion, editor, Actes du 3`eme colloque R&T sur les Ecoulements Internes en Propulsion Solide, Poitiers, Mars 1998, volume 2, pages 119-139, 1998.
    • [16] D. Kalantari and C. Tropea. Comparison between splash of a droplet in isolation and in a spray. Spray Workshop 2006, May 29-30th, Lampoldshausen, Germany, 2006.
    • [17] D. Kalantari and C. Tropea. Spray impact onto flat and rigid walls: empirical characterization and modelling. Int. J. Multiphase Flow, 33:525-544, 2007.
    • [18] M. Marengo and C. Tropea. Aufprall von Tropfen auf Flussigkeitsfilme. Tr. 194/10, 1,2, Deutsche Forschungsgemeinschaft, 1999.
    • [19] J. Mathiaud. E´tude de syst`emes de type gaz-particules. PhD thesis, E´cole Normale Sup´erieure de Cachan, 2006.
    • [20] A. Mellet and A. Vasseur. Existence and uniqueness of global strong solutions for one-dimensional compressible Navier-Stokes equations. To appear in SIAM J. Math. Anal., 2007.
    • [21] S. Mischler. On the initial boundary value problem for the Vlasov-Poisson-Boltzmann system. Comm. Math. Phys., 210(2):447- 466, 2000.
    • [22] S. Mischler. On the trace problem for solutions of the Vlasov equation. Comm. Partial Differential Equations, 25(7-8):1415- 1443, 2000.
    • [23] C. Mundo, M. Sommerfeld, and C. Tropea. Droplet-wall collisions: experimental studies of the deformation and breakup process. Int. J. Multiphase Flow, 21 (2):151-173, 1995.
    • [24] C. Mundo, M. Sommerfeld, and C. Tropea. Experimental studies of the deposition and splashing of small liquid droplets impinging on a flat surface. Proc. ILASS-95, Nuremberg, Germany, 1995.
    • [25] C. Mundo, M. Sommerfeld, and C. Tropea. On the modeling of liquid sprays impinging on surfaces. Atomization and Sprays, 8:625-652, 1998.
    • [26] P. J. O'Rourke. Statistical properties and numerical implementation of a model for droplet dispersion in a turbulent gas. J. Comput. Phys., 83:345-360, 1989.
    • [27] M. Rein. Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dynamics Research, 12:61-93, 1993.
    • [28] G. Strang. Level sets and the fast marching method, Applied Mathematics and Scientific Computing, 2007.
    • [29] C. Tropea and I. Roisman. Spray-wall interaction: How much physics do we need in our models? 6th World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, April 17-21, Matsushima, Miyagi, Japan, 2005.
    • [30] L. Vecellio, C. Gu´erin, D. Grimbert, M. De Monte, and P. Diot. In vitro study and semiempirical model for aerosol delivery control during mechanical ventilation. Intensive Care Med, 31:871-876, 2005.
    • [31] R. L. Vander Wal, G. M. Bergerand, and S. D. Mozes. The splash/non splash boundary upon a dry surface and thin fluid film. Exp. Fluids, 40:53-59, 2006.
    • [32] A. L. Yarin and D. A. Weiss. Impact of drops on solid surfaces: self-similar capillary waves, and splashing as a new type of kinematic discontinuity. J. Fluid Mech., 283:141-173, 1995.
    • [33] A.L. Yarin. Drop impact dynamics: splashing, spreading, receding, bouncing. Annu. Rev. Fluid Mech., 38:159-192, 2006.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article