LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Anderson Geoff; Rowe Brian H; Zwarenstein Merrick; Guttmann Astrid; Leaver Chad; Stukel Therese; Golden Brian; Bell Robert; Morra Dante; Abrams Howard; Schull Michael J (2009)
Publisher: BioMed Central
Journal: Implementation Science
Languages: English
Types: Article
Subjects: Research Article, R5-920, Medicine (General)

Abstract

Background

Rigorous evaluation of an intervention requires that its allocation be unbiased with respect to confounders; this is especially difficult in complex, system-wide healthcare interventions. We developed a short survey instrument to identify factors for a minimization algorithm for the allocation of a hospital-level intervention to reduce emergency department (ED) waiting times in Ontario, Canada.

Methods

Potential confounders influencing the intervention's success were identified by literature review, and grouped by healthcare setting specific change stages. An international multi-disciplinary (clinical, administrative, decision maker, management) panel evaluated these factors in a two-stage modified-delphi and nominal group process based on four domains: change readiness, evidence base, face validity, and clarity of definition.

Results

An original set of 33 factors were identified from the literature. The panel reduced the list to 12 in the first round survey. In the second survey, experts scored each factor according to the four domains; summary scores and consensus discussion resulted in the final selection and measurement of four hospital-level factors to be used in the minimization algorithm: improved patient flow as a hospital's leadership priority; physicians' receptiveness to organizational change; efficiency of bed management; and physician incentives supporting the change goal.

Conclusion

We developed a simple tool designed to gather data from senior hospital administrators on factors likely to affect the success of a hospital patient flow improvement intervention. A minimization algorithm will ensure balanced allocation of the intervention with respect to these factors in study hospitals.

Share - Bookmark

Cite this article