Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Thompson, J.R.; Green, A.J.; Kingston, D.G. (2014)
Publisher: Elsevier BV
Journal: Journal of Hydrology
Types: Article
Subjects: Climate change, Uncertainty, Potential evapotranspiration, Mekong, MIKE SHE, Water Science and Technology

Classified by OpenAIRE into

mesheuropmc: sense organs
Six MIKE SHE models of the Mekong are developed, each employing potential evapotranspiration (PET) derived using alternative methods: Blaney–Criddle (BC), Hamon (HM), Hargreaves–Samani (HS), Linacre (LN), Penman (PN) and Priestley–Taylor (PT). Baseline (1961–1990) PET varies, with PT followed by HS providing the lowest totals, LN and BC the highest. The largest mean annual PET is over 1.5 times the smallest. Independent calibration of each model results in different optimised parameter sets that mitigate differences in baseline PET. Performance of each model is “excellent” (monthly NSE > 0.85) or “very good” (NSE: 0.65–0.85). Scenarios based on seven GCMs for a 2 °C increase in global mean temperature are investigated. Inter-GCM variation in precipitation change is much larger (in percentage terms by 2.5–10 times) than inter-GCM differences in PET change. Precipitation changes include catchment-wide increases or decreases as well as spatially variable directions of change, whereas PET increases for all scenarios. BC and HS produce the smallest changes, LN and HM the largest. PET method does impact scenario discharges. However, GCM-related uncertainty for change in mean discharge is on average 3.5 times greater than PET method-related uncertainty. Scenarios with catchment-wide precipitation increases (decreases) induce increases (decreases) in mean discharge irrespective of PET method. Magnitude of change in discharge is conditioned by PET method; larger increases or smaller declines in discharge result from methods producing the smallest PET increases. Uncertainty in the direction of change in mean discharge due to PET method occurs for scenarios with spatially variable precipitation change, although this is limited to few gauging stations and differences are relatively small. For all scenarios, PET method-related uncertainty in direction of change in high and low flows occurs, but seasonal distribution of discharge is largely unaffected. As such, whilst PET method does influence projections of discharge, variation in the precipitation climate change signal between GCMs is a much larger source of uncertainty.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Alcamo, J., Flörke, M., Märker, M., 2007. Future long-term changes in global water resources driven by socio-economic and climatic changes. Hydrol. Sci. J. 52, 247-275.
    • Al Khudhairy, D., Thompson, J.R., Gavin, H., Hamm, N.A.S., 1999. Hydrological modelling of a drained grazing marsh under agricultural land use and the simulation of restoration management scenarios. Hydrol. Sci. J. 44, 943-971.
    • Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop evapotranspiration - Guidelines for computing crop water requirements, FAO Irrigation and Drainage Paper 56. FAO, Rome.
    • Andersen, J., Refsgaard, J.C., Jensen, K.H., 2001. Distributed hydrological modelling of the Senegal River Basin - model construction and validation. J. Hydrol. 247, 200-214.
    • Andréasson, J., Bergström, S., Carlsson, B., Graham, L.P., Lindström, G., 2004. Hydrological change: climate change impact simulations for Sweden. Ambio 33, 228-234.
    • Arnell, N.W., 1999a. The effect of climate change on hydrological regimes in Europe: a continental perspective. Glob. Environ. Change 9, 5-23.
    • Arnell, N.W., 1999b. A simple water balance model for the simulation of streamflow over a large geographic domain. J. Hydrol. 217, 314-335.
    • Arnell, N.W., 2003. Effects of IPCC SRES⁄ emissions scenarios on river runoff: a global perspective. Hydrol. Earth Syst. Sci. 7, 619-641.
    • Arnell, N.W., Osborn, T., 2006. Interfacing Climate and Impacts Models in Integrated Assessment Modelling, Tyndall Centre for Climate Change Research Technical Report 52. Tyndall Centre for Climate Change Research, Southampton and Norwich.
    • Arnell, N.W., Gosling, S.N., 2013. The impacts of climate change on river flow regimes at the global scale. J. Hydrol. 486, 351-364.
    • Arnold, J.G., Srinivasan, R., Muttiah, R.S., Williams, J.R., 1998. Large area hydrologic modeling and assessment part I: model development. J. Am. Water Resour. Assoc. 34, 73-89.
    • Bae, D.H., Jung, I.W., Lettenmaier, D.P., 2011. Hydrologic uncertainties in climate change from IPCC AR4 GCM simulations of the Chungju Basin, Korea. J. Hydrol. 401, 90-105.
    • Bates, B.C., Kundzewicz, Z.W., Wu, S., Palutikof, J.P. (Eds.), 2008. Climate Change and Water, Technical Paper of the Intergovernmental Panel on Climate Change. IPCC Secretariat, Geneva.
    • Brouwer, C., Heibloem, M., 1986. Irrigation Water Management: Irrigation Water Needs, Irrigation Water Management Training Manual 3. FAO, Rome.
    • Carsel, R.F., Parrish, R.S., 1988. Developing joint probability distributions of soil water retention characteristics. Water Resour. Res. 24, 755-769.
    • Chow, V.T., 1959. Open Channel Hydraulics. McGraw-Hill, New York.
    • Chun, K.P., Wheater, H.S., Onof, C.J., 2009. Streamflow estimation for six UK catchments under future climate scenarios. Hydrol. Res. 40, 96-112.
    • Clapp, R.B., Hornberger, G.M., 1978. Empirical equations for some soil hydraulic properties. Water Resour. Res. 14, 601-604.
    • Conway, D., Hulme, M., 1996. The impacts of climate variability and future climate change in the Nile Basin on water resources in Egypt. Int. J. Water Resour. Dev. 12, 277-296.
    • Dent, M.C., Schultze, R.E., Angus, G.R. 1988. Crop water requirements, deficits and water yield for irrigation planning in southern Africa. Report 118/1/88. Water Research Commission, Pretoria.
    • DHI, 2009. MIKE SHE Technical Reference. DHI Water and Environment, Hørsholm.
    • Dibike, Y.B., Coulibaly, P., 2005. Hydrologic impact of climate change in the Saguenay watershed: comparison of downscaling methods and hydrologic models. J. Hydrol. 307, 145-163.
    • Döll, P., Kaspar, F., Lehner, B., 2003. A global hydrological model for deriving water availability indicators: model tuning and validation. J. Hydrol. 270, 105-134.
    • FAO, 1990. FAO-UNESCO Soil Map of the World: Revised Legend, World Soil Resources Report 60. Food and Agriculture Organization of the United Nations, Rome.
    • Feyen, L., Vázquez, R., Christiaens, K., Sels, O., Feyen, J., 2000. Application of a distributed physically-based hydrological model to a medium size catchment. Hydrol. Earth Syst. Sci. 4, 47-63.
    • Floch, P. Molle, F. 2007. Marshalling Water Resources: A Chronology of Irrigation Development in the Chi-Mun River Basin Northeast Thailand. CGIAR Challenge Program on Water and Food, Colombo.
    • Garbrecht, J., Martz, L.W., 1997. TOPAZ Version 1.20: An Automated Digital Landscape Analysis Tool for Topographic Evaluation, Drainage Identification, Watershed Segmentation and Subcatchment Parameterization - Overview. Report number GRL 97-2. USDA Grazinglands Research Laboratory, Agricultural Research Service, El Reno.
    • Gosling, S.N., 2012. The likelihood and potential impact of future change in the large-scale climate-earth system on ecosystem services. Environ. Sci. Policy 27 (Suppl.), S15-S31.
    • Gosling, S.N., Arnell, N.W., 2011. Simulating current global river runoff with a global hydrological model: model revisions, validation and sensitivity analysis. Hydrol. Process. 25, 1129-1145.
    • Gosling, S.N., Bretherton, D., Haines, K., Arnell, N.W., 2010. Global hydrology modelling and uncertainty: running multiple ensembles with a campus grid. Philos. Trans. R. Soc. A 368, 1-17.
    • Gosling, S.N., McGregor, G.R., Lowe, J.A., 2012. The benefits of quantifying climate model uncertainty in climate change impacts assessment: an example with heat-related mortality change estimates. Clim. Change 112, 217-231.
    • Gosling, S.N., Taylor, R.G., Arnell, N.W., Todd, M.C., 2011a. A comparative analysis of projected impacts of climate change on river runoff from global and catchmentscale hydrological models. Hydrol. Earth Syst. Sci. 15, 279-294.
    • Gosling, S.N., Warren, R., Arnell, N.W., Good, P., Caesar, J., Bernie, D., Lowe, J.A., van der Linden, P., O'Hanley, J.R., Smith, S.M., 2011b. A review of recent developments in climate change science. Part II: the global-scale impacts of climate change. Prog. Phys. Geog. 35, 443-464.
    • Graham, D.N., Butts, M.B., 2005. Flexible, integrated watershed modelling with MIKE SHE. In: Singh, V.P., Frevert, D.K. (Eds.), Watershed Models. CRC Press, Boca Raton, pp. 245-272.
    • Haddeland, I., Clark, C., Franssen, W., Ludwig, F., Voß, F., Bertrand, N., Folwell, S., Gerten, D., Gomes, S., Gosling, S.N., Hagemann, S., Hanasaki, N., Heinke, J., Kabat, P., Koirala, S., Polcher, J., Stacke, T., Viterbo, P., Weedon, G., Yeh, P., 2011. Multimodel estimate of the global water balance: setup and first results. J. Hydrometeorol. 12, 869-884.
    • Hagemann, S., Chen, C., Clark, D.B., Folwell, S., Gosling, S.N., Haddeland, I., Hanasaki, N., Heinke, J., Ludwig, F., Voß, F., Wiltshire, A.J., 2012. Climate change impact on available water resources obtained using multiple global climate and hydrology models. Earth Syst. Dyn. Discuss. 3, 1321-1345.
    • Hapuarachchi, H.A.P., Takeuchi, K., Zhou, M.C., Kiem, A.S., Georgievski, M., Magome, J., Ishidaira, H., 2008. Investigation of the Mekong River basin hydrology for 1980-2000 using the YHyM. Hydrol. Process. 22, 1246-1256.
    • Hargreaves, G.H., Samani, Z.A., 1982. Estimating potential evapotranspiration. Technical note. J. Irrig. Drain. Eng. - ASCE 108, 225-230.
    • Havnø, K., Madsen, M.N., Dørge, J., 1995. MIKE 11 - a generalized river modelling package. In: Singh, V.P. (Ed.), Computer Models of Watershed Hydrology. Water Resources Publications, Englewood, pp. 733-782.
    • Henriksen, H.J., Troldborg, L., Højberg, A.J., Refsgaard, J.C., 2008. Assessment of exploitable groundwater resources of Denmark by use of ensemble resource indicators and a numerical groundwater-surface water model. J. Hydrol. 348, 224-240.
    • Henriksen, H.J., Troldborg, L., Nyegaard, P., Sonnenborg, T.O., Refsgaard, J.C., Madsen, B., 2003. Methodology for construction, calibration and validation of a national hydrological model for Denmark. J. Hydrol. 280, 52-71.
    • Huang, Y., Chen, X., Li, Y.P., Willems, P., Liu, T., 2010. Integrated modeling system for water resources management of Tarim River Basin. Environ. Eng. Sci. 27, 255- 269.
    • Hughes, D.A., Kingston, D.G., Todd, M.C., 2011. Uncertainty in water resources availability in the Okavango River basin as a result of climate change. Hydrol. Earth Syst. Sci. 15, 931-941.
    • Immerzeel, W.W., Pellicciotti, F., Shrestha, A.B., 2012a. Glaciers as a proxy to quantify the spatial distribution of precipitation in the Hunza Basin. Mt. Res. Dev. 32, 30-38.
    • Immerzeel, W.W., van Beek, P.H., Konz, M., Shrestha, A.B., Bierkens, M.F.P., 2012b. Hydrological response to climate change in a glacierized catchment in the Himalayas. Clim. Change 110, 721-736.
    • Institute of Hydrology, 1988. Investigation of Dry Season Flows. Water Balance Study Phase 3. Report to the Interim Committee for Coordination of Investigations of the Lower Mekong Basin. Institute of Hydrology, Wallingford.
    • Ishidaira, H., Ishikawa, Y., Funada, S., Takeuchi, K., 2008. Estimating the evolution of vegetation cover and its hydrological impact in the Mekong River basin in the 21st century. Hydrol. Process. 22, 1395-1405.
    • Jackson, R.B., Canadell, J., Ehleringer, J.R., Mooney, H.A., Sala, O.E., Schulze, E.D., 1996. A global analysis of root distributions for terrestrial biomes. Oecologia 108, 389-411.
    • Ji, X., Luo, Y., 2013. The influence of precipitation and temperature input schemes on hydrological simulations of a snow and glacier melt dominated basin in Northwest China. Hydrol. Earth Syst. Sci. Discuss. 10, 807-853.
    • Kay, A.L., Davies, H.N., 2008. Calculating potential evaporation from climate model data: A source of uncertainty for hydrological climate change impacts. J. Hydrol. 358, 221-239.
    • Kelliher, F.M., Leuning, R., Schulze, E.D., 1993. Evaporation and canopy characteristics of coniferous forests and grasslands. Oecologia 95, 153-163.
    • Kiem, A.S., Geogievsky, M.V., Hapaurachchi, H.P., Ishidaira, H., Takeuchi, K., 2005. Relationship between ENSO and snow covered area in the Mekong and Yellow River basins. In: Franks, S.W., Wagener, T., Bøgh, E., Bastidas, L., Nobre, C., Galvão, C.O. (Eds.), Regional Hydrological Impacts of Climate Change - Hydroclimatic variability. IAHS Publ. 296, Wallingford, pp. 255-264.
    • Kiem, A.S., Ishidaira, H., Hapuarachchi, H.P., Zhou, M.C., Hirabayahi, Y., Takeuchi, K., 2008. Future hydroclimatology of the Mekong River basin simulated using the high-resolution Japan Meteorological Agency (JMA) AGCM. Hydrol. Process. 22, 1382-1394.
    • Kingston, D.G., Thompson, J.R., Kite, G., 2011. Uncertainty in climate change projections of discharge for the Mekong River Basin. Hydrol. Earth Syst. Sci. 15, 1459-1471.
    • Kingston, D.G., Todd, M.C., Taylor, R.G., Thompson, J.R., Arnell, N.W., 2009. Uncertainty in the estimation of potential evapotranspiration under climate change. Geophys. Res. Lett. 36, L20403.
    • Kite, G., 1995. The SLURP model. In: Singh, V.P. (Ed.), Computer models of watershed hydrology. Water Resources Publications, Colorado, pp. 521-562.
    • Kite, G., 2000. Developing a Hydrological Model for the Mekong Basin: Impacts of Basin Development on Fisheries Productivity. Working Paper 2. International Water Management Institute, Colombo.
    • Kite, G., 2001. Modelling the Mekong: hydrological simulation for environmental impact studies. J. Hydrol. 253, 1-13.
    • Kummu, M., Lu, X.X., Wang, J.J., Varis, O., 2010. Basin-wide sediment trapping efficiency of emerging reservoirs along the Mekong. Geomorphology 119, 181- 197.
    • Lacombe, G., Pierret, A., Hoanh, C.T., Sengtaheuanghoung, O., Noble, A.D., 2010. Conflict, migration and land-cover changes in Indochina: a hydrological assessment. Ecohydrology 3, 382-391.
    • Legates, D.R., Willmott, C.J., 1990. Mean seasonal and spatial variability in gaugecorrected, global precipitation. Int. J. Climatol. 10, 111-127.
    • Li, S.J., He, D.M., 2008. Water level response to hydropower development in the upper Mekong River. Ambio 37, 170-177.
    • Lu, J.B., Sun, G., McNulty, S.G., Amataya, D.M., 2005. A comparison of six potential evapotranspiration methods for regional use in the southeastern United States. J. Am. Water Resour. Assoc. 41, 621-633.
    • Marshall, T.J., Holmes, J.W., Rose, C.W., 1996. Soil Physics, third ed. Cambridge University Press, Cambridge.
    • Matthews, J.H., Quesne, T.L., 2009. Adapting Water Management: A Primer on Coping with Climate Change. WWF Water Security Series 3, WWF-UK, Godalming.
    • Meehl, G.A., Covey, C., Delworth, T., Latif, M., McAvaney, B., Mitchell, J.F.B., Stouffer, R.J., Taylor, K.E., 2007. The WCRP CMIP3 Multimodel Dataset: A new era in climate change research. Bull. Am. Meteorol. Soc. 88, 1383-1394.
    • Mileham, L., Taylor, R.G., Thompson, J.R., Todd, M.C., Tindimugaya, C., 2008. Impact of rainfall distribution on the parameterisation of a soil-moisture balance model of groundwater recharge in equatorial Africa. J. Hydrol. 359, 46-58.
    • Mitchell, T.D., Jones, P.D., 2005. An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol. 25, 693-712.
    • Murphy, J.M., Sexton, D.M.H., Jenkins, G.J., Boorman, P.M., Booth, B.B.B., Brown, C.C., Clark, R.T., Collins, M., Harris, G.R., Kendon, E.J., Betts, R.A., Brown, S.J., Howard, T.P., Humphrey, K.A., McCarthy, M.P., McDonald, R.E., Stephens, A., Wallace, C., Warren, R., Wilby, R., Wood, R.A. 2009. UK Climate Projections Science Report: Climate Change Projections. Met Office Hadley Centre, Exeter.
    • Nash, I.E., Sutcliffe, I.V., 1970. River flow forecasting through conceptual models. J. Hydrol. 10, 282-290.
    • Nawaz, N.R., Adeloye, A.J., 2006. Monte Carlo assessment of sampling uncertainty of climate change impacts on water resources yield in Yorkshire, England. Clim. Change 78, 257-292.
    • New, M., Hulme, M., Jones, P.D., 1999. Representing twentieth century space-time climate variability, Part I: Development of a 1961-1990 mean monthly terrestrial climatology. J. Clim. 12, 829-856.
    • Nijssen, B., O'Donnell, G.M., Hamlet, A.F., Lettenmaier, D.P., 2001. Hydrologic sensitivity of global rivers to climate change. Clim. Change 50, 143-175.
    • Nobuhiro, T., Shimizu, A., Kabeya, N., Tamai, K., Ito, E., Araki, M., Kubota, T., Tsuboyama, Y., Chann, S., 2008. Evapotranspiration during the late rainy season and middle of the dry season in the watershed of an evergreen forest area, central Cambodia. Hydrol. Process. 22, 1281-1289.
    • Nohara, D., Kitoh, A., Hosaka, M., Oki, T., 2006. Impact of climate change on river discharge projected by multimodel ensemble. J. Hydrometeorol. 7, 1076-1089.
    • Penman, H.L., 1948. Natural evaporation from open water, bare soil and grass. Proc. Roy. Soc. London A 194(Suppl.), 120-145.
    • Poff, N.L., Brinson, M.M., Day. Jr. J.W., 2002. Aquatic Ecosystems and Global Climate Change. Pew Center on Global Climate Change, Arlington.
    • Prudhomme, C., Davies, H., 2009. Assessing uncertainties in climate change impact analyses on the river flow regimes in the UK. Part 1: baseline climate. Clim. Change 93, 177-195.
    • Prudhomme, C., Williamson, J., 2013. Derivation of RCM-driven potential evapotranspiration for hydrological climate change impact analysis in Great Britain: a comparison of methods and associated uncertainty in future projections. Hydrol. Earth Syst. Sci. 17, 1365-1377.
    • Randall, D.A., Wood, R.A., Bony, S., Colman, R., Fichefet, T., Fyfe, J., Kattsov, V., Pitman, A., Shukla, J., Srinivasan, J., Stouffer, R.J., Sumi, A., Taylor, K.E., 2007. Climate models and their evaluation. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L. (Eds.), Climate Change 2007: The Physical Science Basis Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York, pp. 589-662.
    • Refsgaard, J.C., Storm, B., Clausen, T., 2010. Système Hydrologique Europeén (SHE): review and perspectives after 30 years development in distributed physicallybased hydrological modelling. Hydrol. Res. 41, 355-377.
    • Sahoo, G.B., Ray, C., De Carlo, E.H., 2006. Calibration and validation of a physically distributed hydrological model, MIKE SHE, to predict streamflow at high frequency in a flashy mountainous Hawaii stream. J. Hydrol. 327, 94-109.
    • Schultz, R.E., 1989. ACRU: Background, concepts and theory. Report 35, Agricultural Catchments Research Unit, Department of Agricultural Engineering, University of Natal, Pietermaritzburg.
    • Shopea, N., 2003. Station Profiles of Water Quality Monitoring Network in Cambodia: MRC Water Quality Monitoring Station Network Review. Mekong River Commission, Phnom Penh.
    • Shuttleworth, W.J., 1993. Evaporation, in: Maidment D.R. (Ed.), Handbook of Hydrology. McGraw-Hill, New York, pp. 4.1-4.53.
    • Singh, C.R., Thompson, J.R., French, J.R., Kingston, D.G., Mackay, A.W., 2010. Modelling the impact of prescribed global warming on runoff from headwater catchments of the Irrawaddy River and their implications for the water level regime of Loktak Lake, northeast India. Hydrol. Earth Syst. Sci. 14, 1745-1765.
    • Singh, C.R., Thompson, J.R., Kingston, D.G., French, J.R., 2011. Modelling water-level options for ecosystem services and assessment of climate change: Loktak Lake, northeast India. Hydrol. Sci. J. 56, 1518-1542.
    • Sperna Weiland, F.C., Tisseuil, C., Dürr, H.H., Vrac, M., van Beek, L.P.H., 2012. Selecting the optimal method to calculate daily global reference potential evaporation from CFSR reanalysis data for application in a hydrological model study. Hydrol. Earth Syst. Sci. 16, 983-1000.
    • Stisen, S., Jensen, K.H., Sandholt, I., Grimes, D.I.F., 2008. A remote sensing driven distributed hydrological model of the Senegal River basin. J. Hydrol. 354, 131- 148.
    • Stone, R., 2010. Along with power, questions flow at Laos's new dam. Science 328, 414-415.
    • Thompson, J.R., Gavin, H., Refsgaard, A., Refstrup Sørenson, H., Gowing, D.J., 2009. Modelling the hydrological impacts of climate change on UK lowland wet grassland. Wetlands Ecol. Manag. 17, 503-523.
    • Thompson, J.R., 2012. Modelling the impacts of climate change on upland catchments in southwest Scotland using MIKE SHE and the UKCP09 probabilistic projections. Hydrol. Res. 43, 507-530.
    • Thompson, J.R., Green, A.J., Kingston, D.G., Gosling, S.N., 2013a. Assessment of uncertainty in river flow projections for the Mekong River using multiple GCMs and hydrological models. J. Hydrol. 466, 1-30.
    • Thompson, J.R., Laizé, C.L.R., Green, A.J., Acreman, M.C., Kingston, D.G., 2013b. Climate change uncertainty in environmental flows for the Mekong River. Hydrol. Sci. J. (Online: Author Accepted Version).
    • Thompson, J.R., Refstrup Sørenson, H., Gavin, H., Refsgaard, A., 2004. Application of the coupled MIKE SHE/MIKE 11 modelling system to a lowland wet grassland in Southeast England. J. Hydrol. 293, 151-179.
    • Todd, M.C., Taylor, R.G., Osborn, T., Kingston, D., Arnell, N., Gosling, S., 2011. Uncertainty in climate change impacts on basin-scale freshwater resources - preface to the special issue: the QUEST-GSI methodology and synthesis of results. Hydrol. Earth Syst. Sci. 15, 1035-1046.
    • Västilä, K., Kummu, M., Sangmanee, C., Chinvanno, S., 2010. Modelling climate change impacts on the flood pulse in the Lower Mekong floodplains. J. Water Clim. Change 1, 67-86.
    • Vázquez, R.F., Feyen, L., Feyen, J., Refsgaard, J.C., 2002. Effect of grid size on effective parameters and model performance of the MIKE SHE code. Hydrol. Process. 16, 355-372.
    • Vieux, B.E., 2004. Distributed Hydrologic Modeling Using GIS. Kluwer Academic, Dordrecht.
    • Vörösmarty, C.J., Federer, C.A., Schloss, A.J., 1998. Potential evaporation functions compared on US watersheds: Possible implications for global-scale water balance and terrestrial ecosystem modelling. J. Hydrol. 207, 147-169.
    • Wang, J.J., Lu, X.X., Kummu, M., 2011. Sediment load estimates and variations in the lower Mekong River. River Res. Appl. 27, 33-46.
    • Xu, H., Taylor, R.G., Kingston, D.G., Jiang, T., Thompson, J.R., Todd, M., 2010. Hydrological modelling of the River Xiangxi using SWAT2005: a comparison of model parameterizations using station and gridded meteorological observations. Quat. Int. 226, 54-59.
    • Yan, J., Smith, K., 1994. Simulation of integrated surface water and ground water systems - Model formulation. Water Resour. Bull. 30, 1-12.
    • Yu, M., Chen, X., Li, L., Bao, A., de la Paix, M.J., 2011. Streamflow simulation by SWAT using different precipitation sources in large arid basins with scarce raingauges. Water Resour. Manage. 25, 2669-2681.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article