LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Pracy, M; Ching, J; Sadler, E; Croom, S; Baldry, IK; Bland-Hawthorn, J; Brough, S; Brown, M; Couch, W; Davis, T; Drinkwater, M; Hopkins, A; Jarvis, M; Jelliffe, B; Jurek, R; Loveday, J; Pimbblet, K; Prescott, M; Wisniosk, E; Woods, D
Publisher: Oxford University Press
Languages: English
Types: Preprint
Subjects: QB, Astrophysics - Astrophysics of Galaxies

Classified by OpenAIRE into

arxiv: Astrophysics::Cosmology and Extragalactic Astrophysics, Astrophysics::High Energy Astrophysical Phenomena, Astrophysics::Galaxy Astrophysics
We present radio Active Galactic Nuclei (AGN) luminosity functions over the redshift range 0.005 < z < 0.75. The sample from which the luminosity functions are constructed is an optical spectroscopic survey of radio galaxies, identified from matched Faint Images of the Radio Sky at Twenty-cm survey (FIRST) sources and Sloan Digital Sky Survey (SDSS) images.The radio AGN are separated into Low Excitation Radio Galaxies (LERGs) and High Excitation Radio Galaxies (HERGs) using the optical spectra. We derive radio luminosity functions for LERGs and HERGs separately in the three redshift bins (0.005 < z < 0.3, 0.3 < z < 0.5 and 0.5 < z <0.75). The radio luminosity functions can be well described by a double power-law. Assuming this double power-law shape the LERG population displays little or no evolution over this redshift range evolving as ~$(1+z)^{0.06}$ assuming pure density evolution or ~ $(1+z)^{0.46}$ assuming pure luminosity evolution. In contrast, the HERG population evolves more rapidly, best fitted by ~$(1+z)^{2.93}$ assuming a double power-law shape and pure density evolution. If a pure luminosity model is assumed the best fitting HERG evolution is parameterised by ~$(1+z)^{7.41}$. The characteristic break in the radio luminosity function occurs at a significantly higher power (~1 dex) for the HERG population in comparison to the LERGs. This is consistent with the two populations representing fundamentally different accretion modes.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Adelman-McCarthy J. K., Agu¨eros M. A., Allam S. S., Allende Prieto C., et al. 2008, ApJS, 175, 297
    • Akaike H., 1974, IEEE Transactions on Automatic Control, 19, 716
    • Antonucci R., 1993, ARA&A, 31, 473
    • Baldry I. K., Robotham A. S. G., Hill D. T., Driver S. P., et al. 2010, MNRAS, 404, 86
    • Baldwin J. A., Phillips M. M., Terlevich R., 1981, PASP, 93, 5
    • Becker R. H., White R. L., Helfand D. J., 1995, ApJ, 450, 559
    • Best P. N., Heckman T. M., 2012, MNRAS, 421, 1569
    • Best P. N., Kauffmann G., Heckman T. M., Brinchmann J., Charlot S., Ivezi´c Zˇ., White S. D. M., 2005, MNRAS, 362, 25
    • Best P. N., Kaiser C. R., Heckman T. M., Kauffmann G., 2006, MNRAS, 368, L67
    • Best P. N., Ker L. M., Simpson C., Rigby E. E., Sabater J., 2014, MNRAS, 445, 955
    • Binney J., Tabor G., 1995, MNRAS, 276, 663
    • Bˆırzan L., McNamara B. R., Nulsen P. E. J., Carilli C. L., Wise M. W., 2008, ApJ, 686, 859
    • Blanton M. R., Roweis S., 2007, AJ, 133, 734
    • Bondi H., Hoyle F., 1944, MNRAS, 104, 273
    • Bower R. G., Benson A. J., Malbon R., Helly J. C., Frenk C. S., Baugh C. M., Cole S., Lacey C. G., 2006, MNRAS, 370, 645
    • Boyle B. J., Shanks T., Peterson B. A., 1988, MNRAS, 235, 935
    • Brown M. J. I., Webster R. L., Boyle B. J., 2001, AJ, 121, 2381
    • Cannon R., Drinkwater M., Edge A., Eisenstein D., et al. 2006, MNRAS, 372, 425
    • Cavagnolo K. W., McNamara B. R., Nulsen P. E. J., Carilli C. L., Jones C., Bˆırzan L., 2010, ApJ, 720, 1066
    • Chiaberge M., Macchetto F. D., Sparks W. B., Capetti A., Allen M. G., Martel A. R., 2002, ApJ, 571, 247
    • Ching J., 2015, PhD thesis
    • Cirasuolo M., Magliocchetti M., Gentile G., Celotti A., Cristiani S., Danese L., 2006, MNRAS, 371, 695
    • Clewley L., Jarvis M. J., 2004, MNRAS, 352, 909
    • Condon J. J., Cotton W. D., Greisen E. W., Yin Q. F., Perley R. A., Taylor G. B., Broderick J. J., 1998, AJ, 115, 1693
    • Condon J. J., Cotton W. D., Broderick J. J., 2002, AJ, 124, 675
    • Croom S. M., Smith R. J., Boyle B. J., Shanks T., Miller L., Outram P. J., Loaring N. S., 2004, MNRAS, 349, 1397
    • Croom S. M., Richards G. T., Shanks T., Boyle B. J., et al. 2009, MNRAS, 392, 19
    • Croton D. J., et al., 2006, MNRAS, 365, 11
    • Davis T. A., Krajnovi´c D., McDermid R. M., Bureau M., et al. 2012, MNRAS, 426, 1574
    • Donoso E., Best P. N., Kauffmann G., 2009, MNRAS, 392, 617
    • Doroshkevich A. G., Longair M. S., Zeldovich Y. B., 1970, MNRAS, 147, 139
    • Drinkwater M. J., Jurek R. J., Blake C., Woods D., et al. 2010, MNRAS, 401, 1429
    • Driver S. P., Hill D. T., Kelvin L. S., Robotham A. S. G., et al. 2011, MNRAS, 413, 971
    • Dunlop J. S., Peacock J. A., 1990, MNRAS, 247, 19
    • Dunn R. J. H., Fabian A. C., Taylor G. B., 2005, MNRAS, 364, 1343
    • Fabian A. C., Celotti A., Blundell K. M., Kassim N. E., Perley R. A., 2002, MNRAS, 331, 369
    • Fernandes C. A. C., et al., 2015, MNRAS, 447, 1184
    • Ganguly R., Brotherton M. S., 2008, ApJ, 672, 102
    • Gebhardt K., et al., 2000, ApJ, 539, L13
    • Gehrels N., 1986, ApJ, 303, 336
    • Gendre M. A., Best P. N., Wall J. V., 2010, MNRAS, 404, 1719
    • Hardcastle M. J., Evans D. A., Croston J. H., 2007, MNRAS, 376, 1849
    • Harrison C. M., Alexander D. M., Mullaney J. R., Swinbank A. M., 2014, MNRAS, 441, 3306
    • Heckman T. M., Best P. N., 2014, ARA&A, 52, 589
    • Herbert P. D., Jarvis M. J., Willott C. J., McLure R. J., Mitchell E., Rawlings S., Hill G. J., Dunlop J. S., 2010, MNRAS, 406, 1841
    • Hill G. J., Rawlings S., 2003, New Astron. Rev., 47, 373
    • Hine R. G., Longair M. S., 1979, MNRAS, 188, 111
    • Ivezi´c Zˇ., et al., 2002, AJ, 124, 2364
    • Jackson N., Rawlings S., 1997, MNRAS, 286, 241
    • Jackson C. A., Wall J. V., 1999, MNRAS, 304, 160
    • Kauffmann G., et al., 2003, MNRAS, 346, 1055
    • Kauffmann G., Heckman T. M., Best P. N., 2008, MNRAS, 384, 953
    • Lacy M., Rawlings S., Hill G. J., Bunker A. J., Ridgway S. E., Stern D., 1999, MNRAS, 308, 1096
    • Laing R. A., Jenkins C. R., Wall J. V., Unger S. W., 1994, in Bicknell G. V., Dopita M. A., Quinn P. J., eds, Astronomical Society of the Pacific Conference Series Vol. 54, The Physics of Active Galaxies. p. 201
    • Le Floc'h E., Papovich C., Dole H., Bell E. F., Lagache G., 2005, ApJ, 632, 169
    • Liske J., Baldry I. K., Driver S. P., Tuffs R. J., et al. 2015, MNRAS, 452, 2087
    • Longair M. S., 1966, MNRAS, 133, 421
    • Machalski J., Godlowski W., 2000, A&A, 360, 463
    • Magorrian J., et al., 1998, AJ, 115, 2285
    • Mao M. Y., et al., 2012, MNRAS, 426, 3334
    • Mauch T., Sadler E. M., 2007, MNRAS, 375, 931
    • McAlpine K., Jarvis M. J., Bonfield D. G., 2013, MNRAS, 436, 1084
    • McElroy R., Croom S. M., Pracy M., Sharp R., Ho I.-T., Medling A. M., 2015, MNRAS, 446, 2186
    • McNamara B. R., Nulsen P. E. J., 2007, ARA&A, 45, 117
    • Mingo B., Hardcastle M. J., Croston J. H., Dicken D., Evans D. A., Morganti R., Tadhunter C., 2014, MNRAS, 440, 269
    • Page M. J., Symeonidis M., Vieira J. D., Altieri B., et al. 2012, Nature, 485, 213
    • Peacock J. A., 1985, MNRAS, 217, 601
    • Poggianti B. M., 1997, A&AS, 122, 399
    • Rafferty D. A., McNamara B. R., Nulsen P. E. J., Wise M. W., 2006, ApJ, 652, 216
    • Rigby E. E., Best P. N., Brookes M. H., Peacock J. A., Dunlop J. S., Ro¨ttgering H. J. A., Wall J. V., Ker L., 2011, MNRAS, 416, 1900
    • Sadler E. M., Jackson C. A., Cannon R. D., McIntyre V. J., et al. 2002, MNRAS, 329, 227
    • Sadler E. M., et al., 2007, MNRAS, 381, 211
    • Saunders W., Rowan-Robinson M., Lawrence A., Efstathiou G., Kaiser N., Ellis R. S., Frenk C. S., 1990, MNRAS, 242, 318
    • Schechter P., 1976, ApJ, 203, 297
    • Schmidt M., 1968, ApJ, 151, 393
    • Shabala S. S., Kaviraj S., Silk J., 2011, MNRAS, 413, 2815
    • Silk J., Nusser A., 2010, ApJ, 725, 556
    • Simpson C., et al., 2006, MNRAS, 372, 741
    • Smith E. P., Heckman T. M., 1989, ApJ, 341, 658
    • Smolˇci´c V., Zamorani G., Schinnerer E., Bardelli S., et al. 2009, ApJ, 696, 24
    • Turner R., Shabala S., 2015, in prep
    • Waddington I., Dunlop J. S., Peacock J. A., Windhorst R. A., 2001, MNRAS, 328, 882
    • Wall J. V., Peacock J. A., 1985, MNRAS, 216, 173
    • Whysong D., Antonucci R., 2004, ApJ, 602, 116
    • Willott C. J., Rawlings S., Blundell K. M., Lacy M., Eales S. A., 2001, MNRAS, 322, 536
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Funded by projects

Cite this article