LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Tzanakis, I.; Lebon, G. S. B.; Eskin, D. G.; Pericleous, K. A. (2017)
Publisher: Elsevier
Journal: Ultrasonics Sonochemistry
Languages: English
Types: Article
Subjects: Chemical Engineering (miscellaneous), QA, Acoustics and Ultrasonics, Cavitation development, Aluminium, Acoustic spectrum, Glycerine, Cavitation bubbles, Radiology Nuclear Medicine and imaging, Water, Ethanol
A bespoke cavitometer that measures acoustic spectrum and is capable of operating in a range of temperatures (up to 750 °C) was used to study the cavitation behaviour in three transparent liquids and in molten aluminium. To relate these acoustic measurements to cavitation development, the dynamics of the cavitation bubble structures was observed in three Newtonian, optically transparent liquids with significantly different physical properties: water, ethanol, and glycerine. Each liquid was treated at 20 kHz with a piezoelectric ultrasonic transducer coupled to a titanium sonotrode with a tip diameter of 40 mm. Two different transducer power levels were deployed: 50% and 100%, with the maximum power corresponding to a peak-to-peak amplitude of 17 μm. The cavitation structures and the flow patterns were filmed with a digital camera. To investigate the effect of distance from the ultrasound source on the cavitation intensity, acoustic emissions were measured with the cavitometer at two points: below the sonotrode and near the edge of the experimental vessel. The behaviour of the three tested liquids was very different, implying that their physical parameters played a decisive role in the establishment of the cavitation regime. Non dimensional analysis revealed that water shares the closest cavitation behaviour with liquid aluminium and can therefore be used as its physical analogue in cavitation studies; this similarity was also confirmed when comparing the measured acoustic spectra of water and liquid aluminium. The UK Engineering and Physical Sciences Research Council (EPSRC), the project Ultramelt in contract numbers: EP/K005804/1 and EP/K00588X/1.
Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok