LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
S. A. Carl; J. N. Crowley (2001)
Publisher: Copernicus Publications
Journal: Atmospheric Chemistry and Physics
Languages: English
Types: Article
Subjects: Chemistry, [ SDU.OCEAN ] Sciences of the Universe [physics]/Ocean, Atmosphere, QD1-999, Physics, QC1-999
The kinetics of the title reactions were investigated using the laser photolysis - resonance fluorescence method, employing the sequential two-photon dissociation of NO2 in the presence of H2  as the OH source. The 298 K rate constant for OH + C3H8 was found to be (1.15 ± 0.1) × 10-12 cm3 s-1, in excellent agreement with the literature recommendation, and with a separate determination using HNO3  photolysis at 248 nm as the OH source. The 298 K rate constants for OH + n - C3H7I and  i - C3H7I  were measured for the first time and found to be (1.47 ± 0.08) and (1.22 ± 0.06) × 10-12 cm3 s-1, respectively. The errors include an assessment of systematic error due to concentration measurement, which, for the propyl-iodides was minimised by on-line UV-absorption spectroscopy. These results show that reaction with OH is an important sink for  n - C3H7I and  i - C3H7I, which has implications for the reactive iodine budget of the marine boundary layer.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Alicke, B., Hebestreit, K., Stutz, J., and Platt, U.: Iodine oxide in the marine boundary layer, Nature, 397, 572-573, 1999.
    • Allan, B. J., McFiggans, G., Plane, J. M. C., and Coe, H.: Observations of iodine monoxide in the remote marine boundary layer, J. Geophys. Res., 105, 14 363-14 369, 2000.
    • Atkinson, R., Baulch, D. L., Cox, R. A., Hampson, R. F. J., Kerr, J. A., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: supplement VI. IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry, J. Phys. Chem. Ref. Data, 26, 1329-1499, 1997.
    • Berry, R. J., Yuan, J., Misra, A., and Marshall, P.: Experimental and computational investigations of the reaction of OH with CF3I and the enthalpy of formation of HOI, J. Phys. Chem., A 102, 5182-5188, 1998.
    • Brauers, T., Hausmann, M., Bister, A., Kraus, A., and Dorn, H. P.: OH radicals in the boundary layer of the Atlantic Ocean 1. Measurements by long-path laser absorption spectroscopy, J. Geophys. Res., 106, 7399-7414, 2001.
    • Brown, A. C., Canosa-Mas, C. E., and Wayne, R. P.: A Kineticstudy of the reactions of OH with CH3I and CF3I, Atmos. Environ., 24, 361-367, 1990.
    • Carl, S. A. and Crowley, J. N.: Sequential two (blue) photon absorption by NO2 in the presence of H2 as a source of OH in pulsed photolysis kinetic studies: Rate constants for reaction of OH with CH3NH2, (CH3)2NH, (CH3)3N, and C2H5NH2 at 295 K, J. Phys. Chem., A 102, 8131-8141, 1998.
    • Carpenter, L. J., Sturges, W. T., Penkett, S. A., Liss, P. S., Alicke, B., Hebestreit, K., and Platt, U.: Short-lived alkyl iodides and bromides at Mace Head, Ireland: Links to biogenic sources and halogen oxide production, J. Geophys. Res., 104, 1679-1689, 1999.
    • Chameides, W. L. and Davis, D. D.: Iodine - its possible role in tropospheric photochemistry, J. Geophys. Res., 85, 7383-7398, 1980.
    • Chatfield, R. B. and Crutzen, P. J.: Are there interactions of iodine and sulfur species in marine air photochemistry, J. Geophys. Res., 95, 22 319-22 341, 1990.
    • Cotter, E. S. N., Booth, N. J., Canosa-Mas, C. E., Gray, D. J., Shallcross, D. E., and Wayne, R. P.: Reactions of Cl atoms with CH3I, C2H5I, 1-C3H7I, 2-C3H7I and CF3I: kinetics and atmospheric relevance, Phys. Chem. Chem. Phys., 3, 402-408, 2001.
    • Crowley, J. N., Campuzano-Jost, P., and Moortgat, G. K.: Temperature dependent rate constants for the gas-phase reaction between OH and CH3OCl, J. Phys. Chem., 100, 3601-3606, 1996.
    • Crutzen, P. J.: Atmospheric interactions-homogeneous gas reactions of C, N, and S containing compounds, in: The major biogeochemical cycles and their interactions, (Eds) Bolin, B. and Cook, R. B., 67-113, J. Wiley, Chichester, New York, 1983.
    • Davis, D., Crawford, J., Liu, S., McKeen, S., Bandy, A., Thornton, D., Rowland, F., and Blake, D.: Potential impact of iodine on tropospheric levels of ozone and other critical oxidants, J. Geophys. Res., 101, 2135-2147, 1996.
    • DeMore, W. B., Sander, S. P., Golden, D. M., Hampson, R. F., Kurylo, M. J., Howard, C. J., Ravishankara, A. R., Kolb, C. E., and Molina, M. J.: Chemical Kinetics and Photochemical Data for Use in Stratospheric Modelling, No 12, Jet Propulsion Laboratory, Pasadena, CA, 1997.
    • Gilles, M. K., Turnipseed, A. A., Talukdar, R. K., Rudich, Y., Villalta, P. W., Huey, L. G., Burkholder, J. B., and Ravishankara, A. R.: Reactions of O(3P) with alkyl iodides: Rate coefficients and reaction products, J. Phys. Chem., 100, 14 005-14 015, 1996.
    • Happell, J. D. and Wallace, D. W. R.: Methyl iodide in the Greenland/Norwegian Seas and the tropical Atlantic Ocean: evidence for photochemical production, Geophys. Res. Lett., 23, 2105- 2108, 1996.
    • Jenkin, M. E.: The tropospheric chemistry of ozone in the polar regions, in NATO ASI Series Vol. I7, (Eds) Niki, H. and Becker, K. H., Springer-Verlag, Berlin, 1993.
    • Jenkin, M. E., Cox, R. A., and Candeland, D. E.: Photochemical Aspects of Tropospheric Iodine Behaviour, J. Atmos. Chem., 2, 359-375, 1985.
    • Klaasen, J. J., Lindner, J., and Leone, S. R.: Observation of the v1 OH(OD) stretch of HOI and DOI by Fourier transform infrared emission spectroscopy, J. Chem. Phys., 104, 7403-7411, 1996.
    • McFiggans, G., Plane, J. M. C., Allan, B. J., Carpenter, L. J., Coe, H., and O'Dowd, C.: A modeling study of iodine chemistry in the marine boundary layer, J. Geophys. Res., 105, 14 371-14 385, 2000.
    • Monks, P. S., Stief, L. J., Tardy, D. C., Liebman, J. F., Zhang, Z., Kuo, S.-C., and Klemm, R. B.: Discharge flow-photoionization mass spectrometric study of HOI: Photoionization efficiency spectrum and ionization energy, J. Phys. Chem., 99, 16 566- 16 570, 1995.
    • Pszenny, A. A. P., Keene, W. C., Jacob, D. J., Fan, S., Maben, J. R., Zetwo, M. P., Springer-Young, M., and Galloway, J. N.: Evidence of inorganic chlorine gases other than hydrogen chloride in marine surface air, Geophys. Res. Lett., 20, 699-702, 1993.
    • Roehl, C. M., Burkholder, J. B., Moortgat, G. K., Ravishankara, A. R., and Crutzen, P. J.: Temperature dependence of UV absorption cross sections and atmospheric implications of several alkyl iodides, J. Geophys. Res., 102, 12 819-12 829, 1997.
    • Rudolph, J., Ramacher, B., Plass-Du¨lmer, C., Mu¨ller, K.-P., and Koppmann, R.: The indirect determination of chlorine atom concentration in the troposphere from changes in the patterns of nonmethane hydrocarbons, Tellus 49B, 592-601, 1997.
    • Schall, C. and Heumann, K. G.: GC determination of volatile organoiodine and organobromine compounds in Arctic seawater and air samples, Fresenius' J. Anal. Chem., 346, 717-722, 1993.
    • Sekus˘ak, S. and Sabljic, A.: The role of complexes in hydrogen abstraction from haloethanes by the hydroxyl radical. A case of guided reactions, Chem. Phys. Lett., 272, 353-360, 1997.
    • Singh, H. B., Salas, L. J., and Stiles, R. E.: Methyl halides in and over the Eastern Pacific (40◦ N-32◦ S), J. Geophys. Res., 88, 3684-3690, 1983.
    • Singh, H. B., Thakur, A. N., Chen, Y. E., and Kanakidou, M.: Tetrachloroethylene as an indicator of low Cl atom concentrations in the troposphere, Geophys. Res. Lett., 23, 1529-1532, 1996.
    • Singh, H. N., Gregory, G. L., Anderson, B., Browell, E., Sachse, G. W., Davis, D. D., Crawford, J., Bradshaw, J. D., Talbot, R., Blake, D. R., Thornton, D., Newell, R., and Merrill, J.: Low ozone in the marine boundary layer of the tropical Pacific ocean: photochemical loss, chlorine atoms, and entrainment, J. Geophys. Res., 101, 1907-1917, 1996.
    • Smith, I. W. and Williams, M. D.: Vibrational-relaxation of OH(v=1) and OD(v=1) by HNO3, DNO3, H2O, NO and NO2, J. Chem. Soc. Faraday Trans., 2, 81, 1849-1860, 1985.
    • Stutz, J., Hebestreit, K., Alicke, B., and Platt, U.: Chemistry of halogen oxides in the troposphere: Comparison of model calculations with recent field data, J. Atmos. Chem., 34, 65-85, 1999.
    • Talukdar, R. K., Mellouki, A., Gierczak, T., Barone, S., Chiang, S.-Y., and Ravishankara, A. R.: Kinetics of the reactions of OH with alkanes, Int. J. Chem. Kinet., 26, 973-990, 1994.
    • Tsang, W.: Chemical kinetic data base for combustion chemistry. Part 3. Propane, J. Phys. Chem. Ref., Data 17, 887, 1988.
    • Vogt, R., Sander, R., von Glasow, R., and Crutzen, P. J.: Iodine chemistry and its role in halogen activation and ozone loss in the marine boundary layer: a model study, J. Atmos. Chem., 32, 375-395, 1999.
    • Wingenter, O. W., Kubo, M. K., Blake, N. J., Smith, Jr., T. W., Blake, D. R., and Rowland, F. S.: Hydrocarbon and halocarbon measurements as photochemical and dynamical indicators of atmospheric hydroxyl, atomic chlorine, and vertical mixing obtained during Lagrangian flights, J. Geophys. Res., 101, 4331- 4340, 1996.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article