LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Zhang, Yun-Qian; Zhu, Qian-Jiang; Xue, Sai-Feng; Tao, Zhu (2007)
Publisher: Molecular Diversity Preservation International
Journal: Molecules
Languages: English
Types: Article
Subjects: molecular capsules., Organic chemistry, QD241-441, crystal structure, Cucurbit[5]uril, decamethylcucurbit[5]uril
Identifiers:doi:10.3390/12071325
Three barrel-shaped artificial molecular capsules 1-3, based on normal cucurbit[5]uril (Q[5]) and decamethylcucurbit[5]uril (Me10Q[5]), were synthesized and structurally characterized by single-crystal X-ray diffraction. Encapsulation of a chlorine anion in the cavity of a Q[5] or Me10Q[5] to form closed a molecular capsule with the coordinated metal ions or coordinated metal ions and water molecules in the crystal structures of these compounds is common. The three complexes [Pr2(C30H30N20O10)Cl3(H2O)13]3+3Cl-·5H2O (1), [Sr2(C40H50N20O10)(H2O)4Cl]3+3Cl-·2(HCl) 19H2O (2) and [K(C40H50N20O10)(H2O)Cl]·[Zn(H2O)2Cl2]·[ZnCl4]2-·2(H3O)+·8H2O (3) all crystallize as isolated molecular capsules.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Beer, P. D.; Gale, P. A. Anion Recognition and Sensing: The State of the Art and Future Perspectives. Angew. Chem., Int. Ed. 2001, 40, 486-516.
    • 2. Bondy, C. R.; Gale, P. A.; Loeb, S. J. Metal-Organic Anion Receptors: Arranging Urea Hydrogen-Bond Donors to Encapsulate Sulfate Ions. J. Am. Chem. Soc. 2004, 126, 5030-5031.
    • 3. Dolomanov, O. V.; Blake, A. J.; Champness, N. R.; Schröder, M.; Wilson, Claire. A novel synthetic strategy for hexanuclear supramolecular architectures. Chem. Commun. 2003, 682-683.
    • 4. Berg, J. M. Zinc Finger Domains: From Predictions to Design. Acc. Chem. Res. 1995, 28, 14-19.
    • 5. Hasenknopf, B.; Lehn, J.-M.; Kneisel, B. O.; Baum, G.; Fenske, D. Self-Assembly of a Circular Double Helicate. Angew. Chem., Int. Ed. Engl. 1996, 35, 1838-1840.
    • 6. Mason, S. Clifford, T.; Seib, L.; Kuczera, K.; James K. B. Unusual Encapsulation of Two Nitrates in a Single Bicyclic Cage. J. Am. Chem. Soc. 1998, 120, 8899-8890.
    • 7. Park, C. H.; Simmons, H. E. Macrobicyclic Amines. 111. Encapsulation of Halide Ions by in, in-l,(k + 2)-Diazabicyclo[k.l.m]alkaneammonium Ions. J. Am. Chem. Soc. 1968, 90, 2431-2432.
    • 8. Sessler, J. L.; Anzenbacher, P., Jr; Shriver,; J. A.; Jursı´kova´, K.; Lynch, V. M.; Marquez, M. Direct Synthesis of Expanded Fluorinated Calix[n]pyrroles: Decafluorocalix[5]pyrrole and Hexadecafluorocalix[8]pyrrole. J. Am. Chem. Soc. 2000, 122, 12061-12062.
    • 9. Cafeo, G.; Kohnke, F. H.; Torre, G. L. L.; White, A. J. P.; Williams, D. J. The complexation of halide ions by a calix[6]pyrrole. Chem. Commun. 2000, 1207-1208.
    • 10. Chellappan, K.; Singh, N. J.; Hwang, I. C.; Lee, J. W.; Kim, K. S. A. Calix[4]imidazolium[2]- pyridine as an Anion Receptor. Angew. Chem., Int. Ed. 2005, 44, 2899-2903.
    • 11. Ihm, H.; Yun, S.; Kim, H. G.; Kim, J. K.; Kim, K. S. Tripodal Nitro-Imidazolium Receptor for Anion Binding Driven by (C-H)+-X hydrogen Bonds. Org. Lett. 2002, 4, 2897-2900.
    • 12. Yoon, J.; Kim, S. K.; Singh, N. J.; Kim, K. S. Imidazolium receptors for the recognition of anions Chem. Soc. Rev. 2006, 35, 355-360.
    • 13. Yang, X.; Knobler, C. B.; Hawthorne, M. F. Macrocyclic Lewis Acid Host-Halide Ion Guest Species. Complexes of Iodide Ion. J. Am. Chem. Soc. 1992, 114, 380-382.
    • 14. Freeman, W. A.; Mock, W. L.; Shih, N. Y. Cucurbituril. J. Am. Chem. Soc. 1981, 103, 7367-7368.
    • 15. Kim, J.; Jung, I. S.; Kim, S. Y.; Lee, E.; Kang, J. K.; Sakamoto, S.; Yamaguchi, K.; Kim, K. New Cucurbituril Homologues: Syntheses, Isolation, Characterization, and X-ray Crystal Structures of Cucurbit[n]uril (n = 5, 7, and 8). J. Am. Chem. Soc. 2000, 122, 540-541.
    • 16 Day, A. I.; Arnold, A. P.; Blanch, R. J. (Unisearch Limited, Australia). Method for Synthesis of Cucurbiturils. Patent WO 0068232, 2000.
    • 17 Day, A. I.; Blanck, R. J.; Amold, A. P.; Lorenzo, S.; Lewis, G. R.; Dance, I. A cucurbituril-based gyroscane: a new supramolecular form. Angew. Chem., Int. Ed. 2002, 41, 275-277.
    • 18 Day, A. I.; Arnold, A. P.; Blanch, R. J. A method for synthesizing partially substituted cucurbit[n]uril. Molecules 2003, 8, 74-84.
    • 19. Flinn, A.; Hough, G. C.; Stoddart, J. F.; Williams, D. J.; Decamethylcucurbit[5]uril. Angew. Chem. Int. Ed. 1992, 31, 1475-1477.
    • 20. Sasmal, S.; Sinha, M. K.; Keinan, E. Facile Purification of Rare Cucurbiturils by Affinity Chromatography. Org. Lett. 2004, 6, 1225-1228.
    • 21. Jon, S. Y.; Selvapalam, N.; Oh, D. H.; Kang, J.-K.; Kim, S.-Y. ; Jeon, Y. J.; Lee, J. W.; Kim, K. Facil e Synthesis of Cucurbit[n]uril Derivatives via Direct Functionalization: Expanding Utilization of Cucurbit[n]uril. J. Am. Chem. Soc. 2003, 125, 10186-10187.
    • 22. Isobe, H.; Sato, S.; Nakamura, E. Synthesis of Disubstituted Cucurbit[6]uril and Its Rotaxane Derivative. Org. Lett. 2002, 4, 1287-1289.
    • 23. Lagona, J.; Fettinger, J. C.; Isaacs, L. Cucurbit[n]uril Analogues. Org. Lett. 2003, 5, 3745-3747.
    • 24. Lagona, J.; Mukhopadhyay, P.; Chakrabarti, S.; Isaacs, L. The cucurbit[n]uril family. Angew. Chem., Int. Ed. 2005, 44, 4844-4870.
    • 25. Lee, J. W.; Samal, S.; Selvapalam, N.; Kim, H. J.; Kim, K. Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistry. Acc. Chem. Res. 2003, 36, 621-630.
    • 26. Gerasko, O. A.; Samsonenko, D. G.; Fedin, V. P. Supramolecular chemistry of cucurbiturils. Russ. Chem. Rev. 2002, 71, 741-760.
    • 27. Samsonenko, D. G.; Lipkowski, J.; Gerasko, O. A.; Virovets, A. V.; Sokolov, M. N.; Fedin, V. P.; Platas, J. G.; Hernandez-Molina, R.; Mederos, A. Cucurbituril as a New Macrocyclic Ligand for Complexation of Lanthanide Cations in Aqueous Solutions. Eur. J. Inorg. Chem. 2002, p. 2380-2388.
    • 28. Gerasko, O. A.; Virovets, A. V.; Samsonenko, D. G.; Tripolskaya, A. A.; Fedin, V. P.; Fenske, D. Synthesis and crystal structures of supramolecular compounds of cucurbit[n]urils (n = 6, 8) with polynuclear strontium aqua complexes. Russ. Chem. Bull. Int. Ed. 2003, 52, 585-593.
    • 29. Gerasko, O. A.; Sokolov, M. N.; Fedin, V. P. Mono- and polynuclear aqua complexes and cucurbit[6]uril: Versatile building blocks for supramolecular chemistry. Pure Appl. Chem. 2004, 76, 1633-1639.
    • 30. Samsonenko, D. G.; Gerasko, O. A.; Virovets, A. V.; Fedin, V. P. Synthesis and crystal structure of a supramolecular adduct of trinuclear molybdenum oxocluster with macrocyclic cavitand cucurbit[5]uril containing the included ionic associate Na+...Cl...Na+. Russ. Chem. Bull. 2005, 54, 1557-1562.
    • 31. Liu, J.-X.; Long, L.-S.; Huang, R.-B.; Zheng, L.-S. Molecular Capsules Based on Cucurbit[5]uril Encapsulating “Naked” Anion Chlorine. Cryst. Growth Des. 2006, 6, 2611-2614.
    • 32. Samsonenko, D. G.; Gerasko, O. A.; Mit'kina, T. V.; Lipkowski, J.; Virovets, A. V.; Fenske, D.; Fedin, V. P. Synthesis and Crystal Structure of Supramolecular Adducts of Macrocyclic Cavitand Cucurbituril with Chromium(III) and Nickel(II) Aqua Complexes. Russ. J. Coord. Chem. 2003, 29, 166-174.
    • Day, A. I.; Arnold, A. P.; Blanch, R. J.; Snushall, B. Controlling Factors in the Synthesis of Cucurbituril and Its Homologues. J. Org. Chem. 2001, 66, 8094-8100.
    • Sheldrick, G. M. Phase annealing in SHELX-90: direct methods for larger structures. Acta Crystallogr., Sect. A 1990, 46, 467-473.
    • Sheldrick, G. M. SHELXL-97 Program for the Solution and Refinement of Crystal structures; University of Göttingen: Göttingen, Germany, 1997.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    64
    64%
  • No similar publications.

Share - Bookmark

Cite this article