Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
S. H. Zainud-Deen; N. A. El-Shalaby; S. M. Gaber; H. A. Malhat (2016)
Publisher: Hindawi Publishing Corporation
Journal: International Journal of Microwave Science and Technology
Languages: English
Types: Article
Subjects: Physics, Electrical engineering. Electronics. Nuclear engineering, TK1-9971, QC1-999, Article Subject
Circularly polarized (CP) transparent microstrip reflectarray antenna is integrated with solar cell for small satellite applications at 10 GHz. The reflectarray unit cell consists of a perfect electric conductor (PEC) square patch printed on an optically transparent substrate with the PEC ground plane. A comparison between using transparent conducting polymers and using the PEC in unit-cell construction has been introduced. The waveguide simulator is used to calculate the required compensation phase of each unit cell in the reflectarray. The radiation characteristics of 13 × 13 CP transparent reflectarray antenna are investigated. A circularly polarized horn antenna is used to feed the reflectarray. The solar cell is incorporated with the transparent reflectarray on the same area. The solar-cell integration with the reflectarray reduces the maximum gain by about 0.5 dB due to the increase in the magnitude of the reflection coefficient. The results are calculated using the finite integral technique (FIT).
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Pozar, D. M., Metzler, T. A.. Analysis of a reflectarray antenna using microstrip patches of variable size. Electronics Letters. 1993; 29 (8): 657-658
    • Kawashima, T., Matsui, H., Tanabe, N.. New transparent conductive films: FTO coated ITO. Thin Solid Films. 2003; 445 (2): 241-244
    • Chang, D.-C., Huang, M.-C.. Multiple-polarization microstrip reflectarray antenna with high efficiency and low cross-polarization. IEEE Transactions on Antennas and Propagation. 1995; 43 (8): 829-834
    • Chaharmir, M. R., Shaker, J., Cuhaci, M., Ittipiboon, A.. A broadband reflectarray antenna with double square rings as the cell elements.
    • Encinar, J. A.. Design of two-layer printed reflectarrays using patches of variable size. IEEE Transactions on Antennas and Propagation. 2001; 49 (10): 1403-1410
    • Encinar, J. A., Zornoza, J. A.. Broadband design of three-layer printed reflectarrays. IEEE Transactions on Antennas and Propagation. 2003; 51 (7): 1662-1664
    • Carrasco, E., Barba, M., Encinar, J. A.. Aperture-coupled reflectarray element with wide range of phase delay. Electronics Letters. 2006; 42 (12): 667-668
    • Turpin, T. W., Baktur, R.. Meshed patch antennas integrated on solar cells. IEEE Antennas and Wireless Propagation Letters. 2009; 8: 693-696
    • Sakita, S., Deguchi, H., Tsuji, M.. Single layer microstrip reflectarray based on dual-resonance behavior. : 1290-1293
    • Vaccaro, S., de Maagt, P.. Insight experiment for combined planar antennas and solar cells (SOLANT). IET Microwave Antennas Propagation. 2009; 3 (8): 1279-1287
    • Vaccaro, S., Torres, P., Mosig, J. R.. Stainless steel slot antenna with integrated solar cells. Electronics Letters. 2000; 36 (25): 2059-2060
    • Ito, K., Wu, M.. See-through microstrip antennas constructed on a transparent substrate. ; 1: 133-136
    • Wu, M.-S., Ito, K.. Basic study on see-through microstrip antennas constructed on a window glass. ; 1: 499-502
    • Song, H. J.. Challenges in glass integrated optically transparent antennas.
    • Turpin, T. W., Baktur, R.. Meshed patch antennas integrated on solar cells. IEEE Antennas and Wireless Propagation Letters. 2009; 8: 693-696
    • Kawashima, T., Matsui, H., Tanabe, N.. New transparent conductive films: FTO coated ITO. Thin Solid Films. 2003; 445 (2): 241-244
    • Jiang, X., Polastre, J., Culler, D.. Perpetual environmentally powered sensor networks. : 463-468
    • Hagerty, J. D.. Radio telemetry buoy for long-range communication.
    • Morais, R., Cunha, J. B., Cordeiro, M., Serodio, C., Salgado, P., Couto, C.. Solar data acquisition wireless network for agricultural applications. : 527-530
    • Green, D. R., Ward, J., Wyper, N.. Solar-powered wireless crosswalk warning system.
    • Baker, D. A.. Telemetry power system.
    • Tompson, G. E.. Wireless, solar-powered, pavement temperature sensor.
    • Isoyama, K., Ohkuma, T., Kawasaki, D.. Power saving wireless telemetering system.
    • Baglio, S., Gagliano, S., Neri, D., Savalli, N., Tina, G.. Optimal design of photovoltaic systems for wireless sensor networks. : 2108-2113
    • Vaccaro, S., Gerlach, L.. Combination of antennas and solar cells for satellite applications. Microwave and Optical Technology Letters. 2001; 29: 243-248
    • Marklein, R., Stone, W. R.. The finite integration technique as a general tool to compute acoustic, electromagnetic, elastodynamic, and coupled wave fields. Review of Radio Science: 1999–2002 URSI, Chapter: The Finite Integration Technique as a General Tool to Compute Acoustic, Electromagnetic, Elastodynamic, and Coupled Wave Fields. 2002: 201-244
    • Al-Shalaby, N. A., Gaber, S. M.. Parametric study on effect of solar-cell position on the performance of transparent DRA transmitarray. AEU—International Journal of Electronics and Communications. 2016; 70: 436-441
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article