Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Girault , Pauline; Lorrain , Nathalie; Poffo , Luiz; Guendouz , Mohammed; Lemaitre , Jonathan; Carré , Christiane; Gadonna , Michel; Bosc , Dominique; Vignaud , Guillaume (2015)
Publisher: American Institute of Physics
Languages: English
Types: Article
Subjects: [ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics], [ PHYS.COND.CM-MS ] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]
International audience; Micro-resonators (MR) have become a key element for integrated optical sensors due to their integration capability and their easy fabrication with low cost polymer materials. Nowadays, there is a growing need on MRs as highly sensitive and selective functions especially in the areas of food and health. The context of this work is to implement and study integrated micro-ring resonators devoted to sensing applications. They are fabricated by processing SU8 polymer as core layer and PMATRIFE polymer as lower cladding layer. The refractive index of the polymers and of the waveguide structure as a function of the wavelength are presented. Using these results, a theoretical study of the coupling between ring and straight waveguides has been undertaken in order to define the MR design. Sub-micronic gaps of 0.5 µm to 1 µm between the ring and the straight waveguides have been successfully achieved with UV (i-lines) photolithography. Different superstrates such as air, water and aqueous solutions with glucose at different concentrations have been studied. First results show a good normalized transmission contrast of 0.98, a resonator quality factor around 1.5x10 4 corresponding to a coupling ratio of 14.7 % and ring propagation losses around 5 dB/cm. Preliminary sensing experiments have been performed for different concentrations of glucose; a sensitivity of 115 ± 8 nm/RIU at 1550 nm has been obtained with this couple of polymers.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] X. Fan, I. M. White, S. I. Shopova, H. Zhu, J.D. Suter, Y. Sun, Analytica Chimica Acta. 620, 8, (2008).
    • [2] Y. Sun and X. Fan, Optics expressed 16, 10254, (2008).
    • [3] A. Chiasera, Y. Dumeige, P. Féron, M. Ferrari, Y. Jestin, G. Nunzi Conti, S. Pelli, S. Soria, G. C. Righini, Laser & Photonics Reviews 4, 457, (2010).
    • [4] G.C. Righini, Y. Dumeige, P. Féron, M. Ferrari, G. Nunzi Conti, D. Ristic, S. Soria. Rivista del Nuovo Cimento 34, 435, (2011).
    • [5] D. Duval and L. M. Lechuga, IEEE Photonics journal 5, 1, (2013).
    • [6] T. Claes, J. G. Molera, K. De Vos, E. Scharcht, R. Baets, P. Bienstman, IEEE Photonics journal 1, 197, (2009).
    • [7] A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goas, L. Wald, E.M. Flood, E. Knobbe, J.V. Hryniewicz, S.T. Chu, D. Gill, W. Chen, O. King, B.E. Little, Biosensors and Bioelectronics 23, 939, (2008).
    • [8] K. De Vos, J. Girones, S. Popelka, E. Schacht, R. Baets, P. Bienstman, Biosensors and Bioelectronics 24, 2528, (2009).
    • [9] W. Bogaerts, P. De Heyn, T.Van Vaerenberg, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout and R. Baets, Laser Photonics Rev. 6, 47, (2012).
    • [10] M. W. Royal, N. M. Jokerst, R. B. Fair, IEEE Photonics journal 4, 2126, (2012).
    • [11] R. Landgraf, A. Finn, R. Kirchner, T. Haugwitz, F. Deicke, W.J. Fischer, S. Arndt, Tagungsband, 259, (2012).
    • [12] C.Y. Chao, W. Fung, L.J. Guo, IEEE journal of selected topics in quantum electronics 12, 134 (2006).
    • [13] A. Maalouf, M. Gadonna, D. Bosc, I. Hardy, Optics Communications 285, 4088 (2012).
    • [14] A. Maalouf, C. Bastianelli, F. Mahé, A. Belmiloudi, M. Gadonna, D. Bosc, Photonics Europe 2012, Silicon Photonics and Photonic Integrated Circuits conference, Brussels, SPIE 8431,75 (2012).
    • [15] P. Girault, J. Lemaitre, M. Guendouz, N. Lorrain, L. Poffo, M. Gadonna, D. Bosc, SPIE Proceedings, Optical Sensing and Detection III 9141, 76, (2014).
    • [16] A. Yariv, Electronics Letters 36, 321 (2000).
    • [17] A. P. Gadre, A. J. Nijdam, J. A. Garra, A. H. Monica., M. C. Cheng, C. Luo, Y. N. Srivastava, T. W. Schneider, T. J. Long, R. C. White, M. Paranjape, J. F. Currie, Sensors and Actuators A 114, 478, (2004).
    • [18] A. El Ouakili, G. Vignaud, E. Balnois, J. F. Bardeau, Y. Grohens, Thin Solid Films, 519 (6), 2031, (2011).
    • [19] D. Salazar-Miranda, F.F. Castillon, J.J. Sanchez-Sanchez, J.L. Angel-Valenzuela, H. Marquez, Revista Mexicana de Ingeniera Quimica 9, 85, (2010).
    • [20] A. Maalouf, D. Bosc, P. Grosso, M. Gadonna, M. Thual, F. Henrio and S. Haesaert, Proc. SPIE 6996, Silicon Photonics and Photonic Integrated Circuits, 69991S, (2008).
    • [21] A. Maalouf, M. Gadonna, D. Bosc, Journal of Physics D: Applied Physics 42, 015106, (2009).
    • [22] E.A.J. Marcatili, Tech. J. 48, 2071, (1969).
    • [23] K. Okamoto, Fundamentals of optical waveguides, 2nd edition, Academic Press, (2006) p.197-198.
    • [24] J. K. S. Poon, Y. Huang, G. T. Paloczi, A. Yariv, IEEE Photonics technology letters 16, 2496, (2004).
    • [25] C. Ciminelli, F. Dell'Olio, D. Conteduca, C.M. Campanella, M.N. Armenise, Optics & laser technology 59, 60, (2014).
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article