LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Beaudoin , Nicolas; Bellahsen , Nicolas; Lacombe , Olivier; Emmanuel , Laurent (2011)
Publisher: AGU and the Geochemical Society
Languages: English
Types: Article
Subjects: [ SDU.STU ] Sciences of the Universe [physics]/Earth Sciences
International audience; New geochemical and microstructural data constrain the origins and pathways of paleofluids during the growth of Sheep Mountain Anticline, Wyoming, United States. Oxygen, carbon, and strontium isotope studies were performed on prefolding and fold-related calcite veins and their sedimentary host rocks and combined to fluid inclusion microthermometry results. We show that most of the cements precipitated from Paleogene meteoric fluid. Stable isotopes and fluid inclusion homogenization temperatures further indicate that most veins were mineralized from upward moving fluids after these fluids were heated at depth (T > 110°C). This implies that fluids migrated along the basement thrust underlying the fold and/or at the base of the cover. Above the fault tip, the fluids circulated rapidly in the diffuse synfolding (and early folding) fracture network. The zone of preferential migration of the warm fluids is currently located in the backlimb of the fold, which supports some of the previously published structural interpretation of the subsurface. This study also highlights the potential of combined fracture analysis and geochemical analyses of paleofluid flows in fractures to constrain both the deformation history and the fluid flow during basement-involved shortening in Laramide-style forelands.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Amrouch, K., O. Lacombe, N. Bellahsen, J. M. Daniel, and J. P. Callot (2010a), Stress and strain patterns, kinematics and deformation mechanisms in a basement‐cored anticline: Sheep Mountain Anticline, Wyoming, Tectonics, 29, TC1005, doi:10.1029/2009TC002525.
    • Amrouch, K., P. Robion, J. P. Callot, O. Lacombe, J. M. Daniel, N. Bellahsen, and J. L. Faure (2010b), Constraints on deformation mechanisms during folding provided by rock physical properties: A case study at Sheep Mountain anticline (Wyoming, USA), Geophys. J. Int., 182, 1105- 1123, doi:10.1111/j.1365-246X.2010.04673.x.
    • Bell, L. H. (1970), Depositional history of the Cambrian Flathead Standstone, Park County, Wyoming, Wyo. Geol. Assoc. Guideb., 22, 115-131.
    • Bellahsen, N., P. Fiore, and D. D. Pollard (2006a), The role of fractures in the structural interpretation of Sheep Mountain Anticline, Wyoming, J. Struct. Geol., 28(5), 850-867, doi:10.1016/j.jsg.2006.01.013.
    • Bellahsen, N., P. Fiore, and D. D. Pollard (2006b), From spatial variation of fracture patterns to fold kinematics: A geomechanical approach, Geophys. Res. Lett., 33, L02301, doi:10.1029/2005GL024189.
    • Bergbauer, S., and D. Pollard (2004), A new conceptual foldfracture model including prefolding joints, based on the Emigrant Gap anticline, Wyoming, Geol. Soc. Am. Bull., 116(3), 294-307, doi:10.1130/B25225.1.
    • Bjorøy, M., J. Williams, D. Dolcater, M. Kemp, and J. Winters (1996), Maturity assessment and characterization of Big Horn Basin Palaeozoic oils, Mar. Pet. Geol., 13(1), 3-23, doi:10.1016/0264-8172(95)00018-6.
    • Bodnar, R. J. (2003), Introduction to fluid inclusions, in Fluid Inclusions: Analysis and Interpretation, edited by I. Samson, A. Anderson, and D. Marshall, Short Course Ser. Mineral. Assoc. Can., 32, 1-8.
    • Boles, J. R., P. Eichhubl, G. Garven, and J. Chen (2004), Evolution of a hydrocarbon migration pathway along basin‐bounding faults: Evidence from fault cement, AAPG Bull., 88(7), 947-970, doi:10.1306/02090403040.
    • Bottinga, Y. (1969), Calculated fractionation factors for carbon and hydrogen isotope exchange in the system calcite‐carbon dioxide‐graphite‐methane‐hydrogen‐water vapor, Geochim. Cosmochim. Acta, 33, 49-64, doi:10.1016/0016-7037(69) 90092-1.
    • Brigaud, F., D. S. Chapman, and S. Le Douaran (1990), Estimating thermal conductivity in sedimentary basins using lithologic data and geophysical well logs, AAPG Bull., 74(9), 1459-1477.
    • Bruckschen, P., S. Oesmann, and J. Veizer (1999), Isotope stratigraphy of the European Carboniferous: Proxy signals for ocean chemistry, climate and tectonics, Chem. Geol., 161, 127-163, doi:10.1016/S0009-2541(99)00084-4.
    • Bussolotto, M., A. Benedicto, C. Invernizzi, L. Micarelli, V. Plagnes, and G. Deina (2007), Deformation features within an active normal fault zone in carbonate rocks: The Gubbio fault (Central Apennines, Italy), J. Struct. Geol., 29, 2017-2037, doi:10.1016/j.jsg.2007.07.014.
    • Cazenave, S., R. Chapoulie, and G. Villeneuve (2003), Cathodoluminescence of synthetic and natural calcite: The effects of manganese and iron on orange emission, Mineral. Petrol., 78(3-4), 243-253, doi:10.1007/s00710-002-0227-y.
    • Chapoulie, R., S. Cazenave, and A. Cerepi (2005), Apport de la cathodoluminescence à haute résolution à l'étude de la diagenèse météorique dans les formations sédimentaires carbonatées, C. R. Geosci., 337(3), 337-346, doi:10.1016/j. crte.2004.10.008.
    • Chung, H., S. Brand, and P. Grizzle (1981), Carbon isotope geochemistry of Paleozoic oils from Big Horn Basin, Geochim. Cosmochim. Acta, 45, 1803-1815, doi:10.1016/0016-7037(81) 90011-9.
    • Conti, A., L. Turpin, R. Polino, M. Mattei, and G. M. Zuppi (2001), The relationship between evolution of fluid chemistry and the style of brittle deformation: Examples from the Northern Apennines (Italy), Tectonophysics, 330, 103-117, doi:10.1016/S0040-1951(00)00224-9.
    • Crowley, P. D., P. W. Reiners, J. M. Reuter, and G. D. Kaye (2002), Laramide exhumation of the Bighorn Mountains, Wyoming: An apatite (U‐Th)/He thermochronology study, Geology, 30(1), 27-30, doi:10.1130/0091-7613(2002) 030<0027:LEOTBM>2.0.CO;2.
    • Dietrich, D., J. A. McKenzie, and H. Song (1983), Origine of calcite in syntectonic veins as determined from carbonisotopes ratios, Geology, 11, 547-551, doi:10.1130/0091- 7613(1983)11<547:OOCISV>2.0.CO;2.
    • Donovan, T. J., I. Friedman, and J. D. Gleason (1974), Recognition of petroleum‐bearing traps by unusual isotopic compositions of carbonate‐cemented surface rocks, Geology, 2, 351-354, doi:10.1130/0091-7613(1974)2<351:ROPTBU> 2.0.CO;2.
    • Douglas, T., C. Chamberlain, M. Poage, M. Abruzzese, S. Shultz, J. Henneberry, and P. Layer (2003), Fluid flow and the Heart Mountain fault: A stable isotopic, fluid inclusion and geochronologic study, Geofluids, 3, 13-32, doi:10.1046/j.1468-8123.2003.00049.x.
    • Erslev, E. A. (2005), 2D Laramide geometries and kinematics of the Rocky Mountains, The Rocky Mountain Region: An Evolving Lithosphere Tectonics, Geochemistry, and Geophysics, Geophys. Monogr. Ser., vol. 154, edited by K. E. Karlstrom and G. R. Keller, pp. 7-20, AGU, Washington, D. C.
    • Evans, M. A., and G. C. Hobbs (2003), Fate of 'warm' migrating fluids in the central Appalachians during the Late Paleozoic Alleghanian orogeny, J. Geochem. Explor., 78-79, 327-331, doi:10.1016/S0375-6742(03)00088-8.
    • Faure, G., and J. L. Powell (1972), Strontium Isotope Geology, 166 pp., Springer, New York.
    • Fiore Allwardt, P., N. Bellahsen, and D. D. Pollard (2007), Curvature and fracturing based on global positioning system data collected at Sheep Mountain Anticline, Wyoming, Geosphere, 3(6), 408-421, doi:10.1130/GES00088.1.
    • Fischer, M. P., I. Camilo Higuera‐Díaz, M. A. Evans, E. C. Perry, and L. Lefticariu (2009), Fracture‐controlled paleohydrology in a map‐scale detachment fold: Insights from the analysis of fluid inclusions in calcite and quartz veins, J. Struct. Geol., 31, 1490-1510.
    • Foreman, J. L., and W. M. Dunne (1991), Condition of vein formation in the southern Appalachian foreland: Constraints from vein geometries and fluid inclusions, J. Struct. Geol., 13(10), 1173-1183, doi:10.1016/0191-8141(91)90076-U.
    • Forster, A., A. P. Irmen, and C. Vondra (1996), Structural interpretation of Sheep Mountain Anticline, Bighorn Basin, Wyoming, Wyo. Geol. Assoc. Guideb., 47, 239-251.
    • Goldstein, R. H., and T. J. Reynolds (1994), Systematics of Fluid Inclusions in Diagenetic Minerals, SEPM Short Course, 31, 199 pp.
    • Hanor, J. S. (1980), Dissolved methane in sedimentary brines: Potential effect on the PVT properties of fluid inclusions, Econ. Geol., 75, 603-609, doi:10.2113/gsecongeo.75.4.603.
    • Harris, J. F., G. L. Taylor, and J. L. Walper (1960), Relation of deformational fractures in sedimentary rocks to regional and local structures, AAPG Bull., 44, 1853-1873.
    • Hathaway, J. C., and E. G. Degens (1969), Methane‐derived marine carbonates of Pleistocene age, Science, 165(3894), 690-692, doi:10.1126/science.165.3894.690.
    • Hennier, J. H. (1984), Structural analysis of the Sheep Mountain Anticline, Bighorn Basin, Wyoming, M.S. thesis, 118 pp., Tex. A&M Univ., College Station.
    • Hennier, J., and J. H. Spang (1983), Mechanisms for deformation of sedimentary strata at Sheep Mountain anticline, Bighorn basin, Wyoming, Wyo. Geol. Assoc. Guideb., 34, 96-111.
    • Johnson, G. D., L. J. Garside, and A. J. Warner (1965), A study of the structure and associated features of Sheep Mountain Anticline, Big Horn County, Wyoming, J. Iowa Acad. Sci., 72, 332-342.
    • Katz, D. A., G. P. Eberli, P. K. Swart, and L. B. Smith Jr. (2006), Tectonic‐hydrothermal brecciation associated with calcite precipitation and permeability destruction in Mississipian carbonate reservoirs, Montana and Wyoming, AAPG Bull., 90, 1803-1841, doi:10.1306/03200605072.
    • Kim, S.‐T., and J. R. O'Neil (1997), Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates, Geochim. Cosmochim. Acta, 61(16), 3461-3475, doi:10.1016/ S0016-7037(97)00169-5.
    • Koch, P. L., J. C. Zachos, and D. L. Dettman (1995), Stable isotope and paleoclimatology of the Paleogene Bighorn Basin (Wyoming, USA), Palaeogeogr. Palaeoclimatol. Palaeoecol., 115, 61-89, doi:10.1016/0031-0182(94)00107-J.
    • Lefticariu, L., E. C. Perry, M. P. Fischer, and J. L. Banner (2005), Evolution of fluid compartmentalization in a detachment fold complex, Geology, 33(1), 69-72, doi:10.1130/ G20592.1.
    • Marquer, D., and M. Burkhard (1992), Fluid circulation, progressive deformation and mass‐transfer processes in the upper crust: The example of basement‐cover relationships in the External Crystalline Massifs, Switzerland, J. Struct. Geol., 14(8-9), 1047-1057, doi:10.1016/0191-8141(92) 90035-U.
    • Neely, T., and E. Erslev (2009), The interplay of fold mechanisms and basement weaknesses at the transition between Laramide basement‐involved arches, north‐central Wyoming, USA, J. Struct. Geol., 31, 1012-1027, doi:10.1016/j.jsg. 2009.03.008.
    • Ramsey, D. W., and C. M. Onasch (1999), Fluid migration in a cratonic setting: The fluid histories of two fault zones in the eastern midcontinent, Tectonophysics, 305, 307-323, doi:10.1016/S0040-1951(99)00021-9.
    • Rhodes, M. K., A. R. Carroll, J. T. Pietras, B. L. Beard, and C. M. Johnson (2002), Strontium isotope record of paleohydrology and continental weathering, Eocene Green River Formation, Wyoming, Geology, 30(2), 167-170, doi:10.1130/ 0091-7613(2002)030<0167:SIROPA>2.0.CO;2.
    • Rosenbaum, J., and S. M. F. Sheppard (1986), An isotopic study of siderites, dolomites and ankerites at high temperatures, Geochim. Cosmochim. Acta, 50(6), 1147-1150, doi:10.1016/ 0016-7037(86)90396-0.
    • Roure, F., R. Swennen, F. Schneider, J. L. Faure, H. Ferkand, N. Guilhaumou, K. Osadandz, P. Robion, and V. Vandeginste (2005), Incidence and importance of tectonics and natural fluid migration on reservoir evolution in foreland fold‐andt h r u s t b e l t s , O i l G a s S ci . T e c hn o l ., 6 0( 1) , 67 - 10 6 , doi:10.2516/ogst:2005006.
    • Savage, H. M., J. R. Shackleton, M. L. Cooke, and J. J. Riedel (2010), Insights into fold growth using fold‐related joint patterns and mechanical stratigraphy, J. Struct. Geol., 32, 1466-1475, doi:10.1016/j.jsg.2010.09.004.
    • Stanton, H. I., and E. A. Erslev (2004), Sheep Mountain Anticline: Backlimb tightening and sequential deformation in the Bighorn Basin, Wyoming., Wyo. Geol. Assoc. Guideb., 53, 75-87.
    • Stearns, D. W. (1971), Mechanisms of drape folding in the Wyoming Province, Wyo. Geol. Assoc. Guideb., 23, 125-144.
    • Stone, D. S. (1967), Theory of Paleozoic oil and gas accumulation in Bighorn Basin, Wyoming, Am. Assoc. Pet. Geol. Bull., 51, 2056-2114.
    • Stone, D. S. (1993), Basement‐involved thrust‐generated folds as seismically imaged in the subsurface of the central Rocky Mountain foreland, in Laramide Basement Deformation in the Rocky Mountain Foreland of the Western United States, edited by C. J. Schmidt, R. B. Chase, and E. A. Erslev, Spec. Pap. Geol. Soc. Am., 280, 271-318.
    • Stone, D. S. (2004), Rio thrusting, multi‐stage migration and formation of vertically segregated Paleozoic oil pools at Torchlight Field on the Greybull Platform (Eastern Bighorn basin): Implication for exploration, Mt. Geol., 41, 119-138.
    • Templeton, A. S., J. Sweeney Jr., H. Manske, J. F. Tilghman, S. C. Calhoun, A. Voilich, and C. P. Chamberlain (1995), Fluids and the Heart Mountain fault revisited, Geology, 23(10), 929-932, doi:10.1130/0091-7613(1995)023<0929: FATHMF>2.3.CO;2.
    • Travé, A., F. Calvet, M. Sans, J. Vergés, and M. Thirlwall (2000), Fluid history related to the Alpine compression at the margin of south‐Pyrenean Foreland basin: The El Guix anticline, Tectonophysics, 321, 73-102, doi:10.1016/ S0040-1951(00)00090-1.
    • Travé, A., P. Labaume, and J. Vergés (2007), Fluid Systems in foreland fold‐and‐thrust belts: An overview from the Southern Pyrenees, in Thrust Belts and Foreland Basins, edited by O. Lacombe, J. Lavé, F. Roure, and J. Vergés, pp. 93-115, Springer, Berlin, doi:10.1007/978-3-540-69426-7_5.
    • Van Geet, M., R. Swennen, C. Durmishi, F. Roure, and P. Muchez (2002), Paragenesis of Cretaceous to Eocene carbonate reservoirs in the Ionian fold and thrust belt (Albania): Relation between tectonism and fluid flow, Sedimentology, 49, 697-718, doi:10.1046/j.1365-3091.2002.00476.x.
    • Zheng, Y. F. (1999), Oxygen isotope fractionation in carbonate and sulphate minerals, Geochem. J., 33, 109-126.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article