LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Gang Qiao; Yunjiang Zhao; Songzuo Liu; Muhammad Bilal (2017)
Publisher: MDPI AG
Journal: Sensors
Languages: English
Types: Article
Subjects: underwater acoustic modem, dolphin sounds, TP1-1185, bionic, Chemical technology, Article, covert, underwater acoustic communication, micro-modem
A novel portable underwater acoustic modem is proposed in this paper for covert communication between divers or underwater unmanned vehicles (UUVs) and divers at a short distance. For the first time, real dolphin calls are used in the modem to realize biologically inspired Covert Underwater Acoustic Communication (CUAC). A variety of dolphin whistles and clicks stored in an SD card inside the modem helps to realize different biomimetic CUAC algorithms based on the specified covert scenario. In this paper, the information is conveyed during the time interval between dolphin clicks. TMS320C6748 and TLV320AIC3106 are the core processors used in our unique modem for fast digital processing and interconnection with other terminals or sensors. Simulation results show that the bit error rate (BER) of the CUAC algorithm is less than 10 − 5 when the signal to noise ratio is over ‒5 dB. The modem was tested in an underwater pool, and a data rate of 27.1 bits per second at a distance of 10 m was achieved.

Share - Bookmark

Cite this article

Collected from