Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Parajka, J.; Naeimi, V.; Blöschl, G.; Wagner, W.; Merz, R.; Scipal, K. (2006)
Publisher: European Geosciences Union
Journal: Hydrology and Earth System Sciences Discussions
Languages: English
Types: Article
Subjects: [SDU.ENVI] Sciences of the Universe [physics]/Continental interfaces, environment, DOAJ:Earth and Environmental Sciences, DOAJ:Geography, [SDU.OCEAN] Sciences of the Universe [physics]/Ocean, Atmosphere, [SDU.STU] Sciences of the Universe [physics]/Earth Sciences, G, GE1-350, DOAJ:Environmental Sciences, GB3-5030, Geography. Anthropology. Recreation, Environmental sciences, Physical geography
International audience; This paper examines the potential of scatterometer data from ERS satellites for improving hydrological simulations in both gauged and ungauged catchments. We compare the soil moisture dynamics simulated by a semidistributed hydrologic model in 320 Austrian catchments with the soil moisture dynamics inferred from the satellite data. The most apparent differences occur in the Alpine areas. Assimilating the scatterometer data into the hydrologic model during the calibration phase improves the relationship between the two soil moisture estimates without any significant decrease in runoff model efficiency. For the case of ungauged catchments, assimilating scatterometer data does not improve the daily runoff simulations but does provide more consistent soil moisture estimates. If the main interest is in obtaining estimates of catchment soil moisture, reconciling the two sources of soil moisture information seems to be of value because of the different error structures.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Ba´rdossy, A. and Lehmann, W.: Spatial distribution of soil moisture in a small catchment. Part 1: geostatistical analysis, J. Hydrol., 206, 1-15, 1998.
    • Bergstro¨ m, S.: Development and application of a conceptual runoff model for Scandinavian catchments, Dept. of Water Resour. Engineering, Lund Inst of Technol./Univ. of Lund, Bull. Ser. A, 52, 134 pp., 1976.
    • Blo¨ schl, G. and Grayson R. B.: Advances in distributed hydrological modelling - towards a new paradigm, Proceedings of the Third International Conference on Water Resources and Environment Research (ICWRER) 22-26 of July 2002 in Dresden, Germany, Volume I. Dresden University of Technology, 17-25, 2002.
    • Blo¨ schl, G.: Rainfall-runoff modelling of ungauged catchments, Article 133 in: Encyclopedia of Hydrological Sciences, edited by: Anderson, M. G., J. Wiley & Sons, Chichester, pp. 2061- 2080, 2005.
    • Boni, G., Entekhabi, D., and Castelli, F.: Land data assimilation with satellite measurements for the estimation of surface energy balance components and surface control on evaporation, Water Resour. Res., 37, 6, 1713-1722, 2001.
    • Ceballos, A., Scipal, K., Wagner, W., and Martinez-Fernandez, J.: Validation and downscaling of ERS Scatterometer derived soil moisture data over the central part of the Duero Basin, Spain, Hydrol. Processes, 19, 8, 1549-1566, 2005.
    • Daley, R.: Atmospheric Data Analysis, Cambridge University Press, Cambridge, UK, 1991.
    • Duan, Q., Sorooshian, S., and Gupta, V. K.: Effective and efficient global optimization for conceptual rainfall-runoff models, Water Res. R., 28, 1015-1031, 1992.
    • Entekhabi, D., Nakamura, H., and Njoku, E.G.: Solving the inverse problem for soil moisture and temperature profiles by sequential assimilation of multifrequency remotely sensed observations, IEEE Trans. Geosci. Remote Sens., 32, 2, 438-447, 1994.
    • Figa-Saldana, J., Wilson, J.J.W., Attema, E., Gelsthorpe, R., Drinkwater, M.R., and Stoffelen, A.: The advanced scatterometer (ASCAT) on the meteorological operational (METOP) platform: A follow on for European wind scatterometers, Can. J. Remote Sens., 28 , 404-412, 2002.
    • Francois, C., Quesney, A., and Ottle´, C.: Sequential Assimilation of ERS-1 SAR Data into a Coupled Land Surface-Hydrological Model Using an Extended Kalman Filter, J. Hydrometeorol., 4, 473-487, 2003.
    • Hoeben, R. and Troch, P. A.: Assimilation of active microwave observation data for soil moisture profile estimation, Water Resour. Res., 36, 10, 2805-2819, 2000.
    • Houser P., Goodrich.D., and Syed, K.: Runoff, precipitation, and soil moisture at Walnut Gulch, Chapter 6, in: Spatial Patterns in Catchment Hydrology: Observations and Modelling, edited by: Grayson, R. and Blo¨ schl, G., Cambridge University Press, Cambridge, 125-157, 2000.
    • Jackson, T.: Estimation of surface soil moisture using microwave sensors, Article 54, in: Encyclopedia of Hydrological Sciences, edited by: Anderson, M. G., J. Wiley & Sons, Chichester, pp. 799-810, 2005.
    • Leemans, R. and Cramer, W.: The IIASA database for mean monthly values of temperature, precipitation and cloudiness on a global terrestrial grid, Research Report RR-91-18, November 199, International Institute of Applied Systems Analyses, Laxenburg, 1991.
    • Lindstro¨ m G.: A simple automatic calibration routine for the HBV model, Nordic Hydrology, 28, 3, 153-168, 1997.
    • Lindstro¨ m, G., Johansson, B., Persson, M., Gardelin, M., and Bergstro¨ m, S.: Development and test of the distributed HBV-96 hydrological model, J. Hydrol., 201, 272-288, 1997.
    • McLaughlin, D.: Recent advances in hydrologic data assimilation, U.S. National Report to the IUGG (1991-1994), Rev. Geophys., Supplement, 977-984, 1995.
    • Merz, R. and Blo¨ schl, G.: Regionalisation of catchment model parameters, J. Hydrol., 287, 95-123, 2004.
    • Me´sza´rosˇ, I, Mikla´nek, P, and Parajka, J.: Solar energy income modelling in mountainous areas, ERB and NEFRIEND Proj. 5 Conf. Interdisciplinary Approaches in Small Catchment Hydrology: Monitoring and Research, edited by: Holko, L., Mikla´nek, P., Parajka, J., and Kostka, Z., Slovak NC IHP UNESCO/UH SAV, Bratislava, Slovakia, 127-135, 2002.
    • Milly, P. C. D.: Integrated remote sensing modeling of soil moisture: sampling frequency, response time, and accuracy of estimates, Integrated Design of Hydrological Networks, Proceedings of the Budapest Symposium, 201-211, IAHS Publication No. 158, 1986.
    • Moradkhani, H., Hsu, K., Gupta, H. V., and Sooroshian, S.: Uncertainty assessment of hydrologic model states and parameters: sequential data assimilation using particle filter. Water Resour. Res., 41, W05012, doi:10.1029/2004WR003604, 2005.
    • Parajka, J., Merz, R., and Blo¨schl, G.: A comparison of regionalisation methods for catchment model parameters, Hydrol. Earth Syst. Sci., 9, 157-171, 2005a.
    • Parajka, J., Merz, R., and Blo¨schl, G.: Estimation of daily potential evapotranspiration for regional water balance modeling in Austria, 11th International Poster Day and Institute of Hydrology Open Day “Transport of Water, Chemicals and Energy in the Soil - Crop Canopy - Atmosphere System”, Slovak Academy of Sciences, Bratislava, 299-306, 2003.
    • Parajka, J., Blo¨schl, G., and Merz, R.: Mapping of daily water balance components in Austria, XXIInd Conference of the Danubian Countries, September 2004, Brno, Czech Republic, 2004.
    • Parajka, J., Blo¨schl, G., and Merz, R: Comparison of two different soil moisture estimates at the regional scale: Scatterometer versus conceptual soil moisture accounting scheme, 13th International Poster Day and Institute of Hydrology Open Day “Transport of Water, Chemicals and Energy in the Soil - Crop Canopy - Atmosphere System”, Slovak Academy of Sciences, Bratislava, 411-422, 2005c.
    • Parajka, J., Merz, R., and Blo¨schl, G.: Regionale Wasserbilanzkomponenten fu¨r O¨ sterreich auf Tagesbasis, O¨sterreichische Wasserund Abfallwirtschaft, 3-4, 43-56, 2005b.
    • Parajka, J., Merz, R., and Blo¨schl, G.: Uncertainty and multiple objective calibration in regional water balance modelling - Case study in 320 Austrian catchments, Hydrol. Processes, in press, 2006.
    • Pebesma, E. J.: Gstat user's manual, Dept. of Physical Geography, Utrecht University, Utrecht, The Netherlands, 2001.
    • Perrin, C., Michel, C., and Andre´assian, V.: Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments, J. Hydrol., 242, 275-301, 2001.
    • Reichle, R. H., McLaughlin, D.B., and Entekhabi, D.: Hydrologic data assimilation with ensemble Kalman filter, Mon. Wea. Rev., 130, 103-114, 2002.
    • Schro¨dter, H.: Verdunstung - Anwendungsorientierte Meßverfahren und Bestimmungsmethoden, Springer Verlag, Berlin, 1985.
    • Schultz, G. and Engman, E.T.: Remote Sensing in Hydrology and Water Management, Springer, Berlin, 2000.
    • Schuurmans, J. M., Troch, P. A., Veldhuizen, A. A., Bastiaanssen, W. G. M., and Bierkens, M. F. P.: Assimilation of remotely sensed latent heat flux in a distributed hydrological model, Adv. Water Resour., 26, 151-159, 2003.
    • Scipal, K., Scheffler, C., and Wagner, W.: Soil moisture-runoff relation at the catchment scale as observed with coarse resolution microwave remote sensing, Hydrol. Earth Syst. Sci., 9(3), 173- 183, 2005.
    • Scipal, K., Wagner, W., Trommler, M., and Naumann, K.: The global soil moisture archive 1992-2000 from ERS scatterometer data: First results, Igarss 2002: Ieee International Geoscience and Remote Sensing Symposium and 24th Canadian Symposium on Remote Sensing, Vols I-Vi, Proceedings - Remote Sensing: Integrating Our View of the Planet, 1399-1401, 2002.
    • Seibert, J.: Regionalisation of parameters for a conceptual rainfallrunoff model, Agr. For. Met., 98-99, 279-293, 1999.
    • Ulaby, F. T., Moore, R. K., and Fung, A. K.: Microwave remote sensing: Active and passive, Volume 2, Artech House, Noorwood, 609 pp., 1982.
    • Wagner, W., Lemoine, G., and Rott, H.: A method for estimating soil moisture from ERS scatterometer and soil data, Remote Sensing of Environment, 70, 2, 191-207, 1999b.
    • Wagner, W., Lemoine, G., Borgeaud, M., and Rott, H.: A study of vegetation cover effects on ERS scatterometer data, Ieee Transactions on Geoscience and Remote Sensing, 37(2), 938-948, 1999a.
    • Wagner, W., Noll, J., Borgeaud, M., and Rott, H.: Monitoring soil moisture over the Canadian Prairies with the ERS scatterometer, Ieee Transactions on Geoscience and Remote Sensing, 37, 1, 206-216, 1999c.
    • Walker, J. P., Willgoose, G. R., and Kalma, J. D.: One-dimensional soil moisture profile retrieval by assimilation of near-surface observations: A comparison of retrieval algorithms, Adv. Water Resour., 24, 6, 631-650, 2001.
    • Western, A. W. and Blo¨schl, G.: On the spatial scaling of soil moisture, J. Hydrol., 217, 203-224, 1999.
    • Western, A. W., Blo¨schl, G., and Grayson, R. B. Geostatistical characterisation of soil moisture patterns in the Tarrawarra catchment, J. Hydrol., 205, 20-37, 1998.
    • Western, A., Grayson, R., and Blo¨schl, G.: Scaling of soil moisture: a hydrologic perspective, Ann. Rev. Earth and Planetary Sci., 30, 149-180, 2002.
    • Wigneron, J. P., Olioso, A., Calvet, J. C., and Bertuzzi, P.: Estimating root zone soil moisture from surface soil moisture data and soil-vegetation-atmosphere transfer modelling, Water Res. R., 35, 12, 3735-3745, 1999.
    • Wismann V. and Woodhouse, I.: Monitoring of seasonal thawing in Siberia with ERS scatterometer data, IEEE Trans. Geoscience and Remote Sensing, 38, 4, 1804-1809, 2000.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects


Cite this article