LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Rashwan, I.M.H. (2013)
Publisher: Elsevier BV
Journal: Ain Shams Engineering Journal
Languages: English
Types: Article
Subjects: TA1-2040, Depth ratio, Triangular channels, Ditch irrigation, Engineering (General). Civil engineering (General), Hydraulic jump, Analytical solutions

Classified by OpenAIRE into

arxiv: Physics::Fluid Dynamics
A hydraulic jump is formed in a channel whenever supercritical flow changes to subcritical flow in a short distance. It can be used in triangular ditch irrigation to raise the downstream water surface. The basic elements and characteristics of the hydraulic jump are provided to aid designers in selecting more practical basins. In the present study, the slope side, discharge and the energy loss in hydraulic jump in horizontal triangular section are known whereas one has to obtain the sequent depths. The specific force and specific energy equations in a horizontal triangular open channel are made dimensionless, writing it for the sequent depths as a function of discharge and head loss. The proposed modes for hydraulic jump elements are of high accuracy and applicable to a wide range of discharge intensity values and initial conditions without any limitations for the assumptions under consideration.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok