LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
S. E. Allen; R. Francois; Y. Luo (2010)
Publisher: Copernicus Publications
Journal: Ocean Science (OS)
Languages: English
Types: Article
Subjects: DOAJ:Earth and Environmental Sciences, GC1-1581, Oceanography, G, GE1-350, Geography. Anthropology. Recreation, Environmental sciences, DOAJ:Oceanography

Classified by OpenAIRE into

ACM Ref: TheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY
A two dimensional scavenging-circulation model is used to investigate the patterns of sediment 231Pa/230Th generated by the Atlantic Meridional Overturning Circulation (AMOC) and further advance the application of this proxy for ocean paleocirculation studies. The scavenging parameters and the geometry of the overturning circulation cell have been chosen so that the model generates meridional sections of dissolved 230Th and 231Pa consistent with published water column profiles and an additional 12 previously unpublished profiles measured in the North and Equatorial Atlantic. The processes that generate the meridional sections of dissolved and particulate 230Th, dissolved and particulate 231Pa, dissolved and particulate 231Pa/230Th, and sediment 231Pa/230Th are discussed in detail. The results indicate that the relationship between sediment 231Pa/230Th at any given site and the overturning circulation is very complex. They clearly show that constraining past changes in the strength and geometry of the AMOC requires an extensive data set and they suggest strategies to maximize information from a limited number of samples.

Share - Bookmark

Cite this article

Collected from