Remember Me
Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Santos,PA dos; Ludke,MCMM; Ludke,JV; Rabello,CBV; Santos,MJB dos; Torres,TR (2015)
Publisher: Fundação APINCO de Ciência e Tecnologia Avícolas
Languages: English
Types: Article
Subjects: poultry, Alternative food, Animal culture, QL1-991, Veterinary medicine, digestibility, SF600-1100, cytotoxicity, SF1-1100, Zoology, energy

Classified by OpenAIRE into

mesheuropmc: digestive, oral, and skin physiology
ABSTRACT These experiments were performed to determine the chemical composition, coefficients of nutrient and energy metabolizability, amino acid composition, and cytotoxicity of different castor oil meals subjected to different detoxification processes and added to the diet of Japanese quails. In the trial, 180 46-d-old female Japanese quails were distributed according to a completely randomized design into five treatments and with replicates of six bird each. The treatments consisted of following detoxification methods of castor oil meal: Castor oil meal A (CMA) - recovery in alcohol at 80 °C for 20 minutes and drying at 80 °C; castor oil meal B (CMB) and C (CMC) - recovery in alcohol at 80 °C for 6 minutes, neutralization with 5% NaOH, and drying under direct sunlight sun for two days (CMB) or pelleted (CMC); castor oil meal D (CMD) - recovery in alcohol at 110 °C for 15 minutes and drying at 110 °C. Castor oil meal was added replacing 20% of the reference diet. There was slight chemical composition variation (1.21% in crude protein, 6% in dry matter, 2.2% in ether extract and 64 kcal/kg in gross energy) among the castor oil meals submitted to the different treatments. The castor oil meal submitted to treatment C showed the highest amino acid values. In the cytotoxicity test, treatment D presented lower ricin activity. Castor oil meals A, C, and D may be included in Japanese quail diets; however, castor oil meal D is recommended due to the simplicity its industrial process, its low toxicity, and metabolizability coefficients obtained.
  • No references.
  • No related research data.
  • No similar publications.
Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok