LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Chausson , Fabienne (2001)
Publisher: HAL CCSD
Languages: French
Types: Doctoral thesis
Subjects: Eau profonde, Comparative study, Etude comparative, Hypercapnie, Ecophysiologie, Deep sea, Hydrothermal Vents, Hemolymph, Hypercapnia, Adaptation, Respiration, Hemocyanine, Ecophysiology, Rimicaris exoculata, Cyanagraea praedator, Hemocyanin, [ SDV.EE.ECO ] Life Sciences [q-bio]/Ecology, environment/Ecosystems, Source hydrothermale, Decapoda, Hemolymphe
Deep-sea hydrothermal vents are characterized by environmental conditions, which are variable in space and time. Hydrothermal decapod crustaceans from the Pacific and the Atlantic ridges; although showing a differential distribution on the chimneys, are exposed to relatively similar physico-chemical parameters. They are submitted to large pH variations, to high H2S and CO2 contents and low O2 content. Species from the Pacific are exposed to more pronounced conditions than Atlantic species. Branchial anatomy of hydrothermal vent crabs is broadly similar to that of other coastal and bathyal crab species are particular structures, which could be sensorial receptors, are observed aligned along the efferent vessel. These structures could play a part in the perception by animal of its chemical environment. Ionic composition of hemolymph of hydrothermal vent crustaceans is not very different from those of other coastal and bathyal species, except for copper bioaccumulation, high lactate and proteins contents. Functional hemocyanin (Hc) do not represent the majority of total proteins, may be due to the presence of high apoHc content which are involved in metal detoxification, in particular copper. The Hc quaternary structure seems to be essentially correlated with the taxonomy of the studied species, and properties not particular could be linked to the hydrothermal environment. These Hc possess high oxygen affinities, prononced Bohr effect, a weak or no lactate effect and a small, and even reverse, temperature effect. An unknown factor, which decreases Hc-O2 affinity, was found in the native hemolymph from Cyanagraea praedator. Buffer capacity from the hemolymph of Pacific decapods, which live in a more hypercapnic environment, seems to be superior to those of Atlantic species. The shrimp Rimicaris exoculata exhibits important adaptations with regard to hypercapnia, with full and rapide compensation compared to those observed on coastal species.; Les sources hydrothermales sont caractérisées par des conditions environnementales spatio-temporelles hyper-variables. Les crustacés décapodes hydrothermaux des dorsales Pacifique et Atlantique, bien que présentant une répartition différentielle sur les cheminées, sont soumis à des paramètres physico-chimiques relativement similaires. Ils rencontrent des variations de pH importants, de fortes concentrations en H2S et en CO2 et de faibles teneurs en O2. Les espèces du Pacifique rencontrent des conditions plus marquées que les espèces de l'Atlantique. Les branchies des brachyoures hydrothermaux apparaissent similaires à celles des crustacés côtiers. Des structures ressemblant à des chémorécepteurs ont été observées sur le vaisseur efférent des branchies. Ces structures pourraient intervenir dans la perception par l'animal de son environnement chimique. La composition ionique de l'hémolymphe de ces crustacés est peu différente de celle des crustacés littoraux, à l'exception de fortes teneurs en lactate, en protéines et en cuivre. Les hémocyanines (Hc) fonctionnelles ne représentent pas la majorité des protéines totales, ce qui pourrait être dû à la présence de forte concentration en apoHc qui jouerait un rôle dans la détoxification des métaux. La structure quaternaire des Hc de crustacés hydrothermaux semble essentiellement corrélée avec la position taxonomique des espèces, sans présenter de particularités majeures liées à l'environnement hydrothermal. Ces Hc présentent de fortes affinités pour l'O2, un effet Bohr marqué, un effet lactate faible à nul et un effet température faible, voire inversé. Un facteur diminuant l'affinité Hc-O2 a été mis en évidence chez Cyanagraea praedator. Le pouvoir tampon de l'hémolymphe des crustacés du Pacifique, vivant dans un milieu plus hypercapnique, semble supérieur à celui des espèces de l'Atlantique. La crevette Rimicaris exoculata présente face à une hypercapnie une réponse rapide et complète comparée à celle des espèces littorales.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Loewe R et Linzen B. 1975. Hemocyanins in spiders. II. Automatic recording of oxygen binding curves, and the effect of Mg++ on oxygen affinity, cooperativity and subunit association of Cupiennus salei hemocyanin. Journal of Comparative Physiology 98: 147-156.
    • Lonsdale PF. 1977. Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers. Deep-Sea Research 24: 857-863.
    • Lowry OH, Rosebrough NJ, Farr AL et Randall RJ. 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193: 265-275.
    • Lykkeboe G, Johansen K et Maloiy GMO. 1975. Functional properties of hemoglobins in the teleost Tilapia grahami. Journal of Comparative Physiology 104: 1-11.
    • Mangum CP et Johansen K. 1975. The colloid osmotic pressures of the body fluids of invertebrates. Journal of Experimental Biology 63: 661-671.
    • Mangum CP et Lykkeboe G. 1979. The influence of inorganic ions and pH on the oxygenation properties of the blood in the gastropod mollusc Busycon canaliculatum. Journal of Experimental Zoology 207: 417-430.
    • Mangum CP. 1982. On the relationship between P50 and the mode of gas exchange in tropical crustaceans. Pacific Science 36: 403-410.
    • Mangum CP. 1983b. On the distribution of lactate sensitivity among the hemocyanins. Marine Biological Letters 4: 139-149.
    • Mangum CP. 1983c. The effect of hypoxia on hemocynin-oxygen binding in the horseshoe crab Limulus polyphemus. Molecular Physiology 3:217-224.
    • Markl J, Decker H, Stöker W, Linzen B, Schutter WG et Van Bruggen EF. 1981a. On the role of dimeric subunits in the quaternary structure of arthropod hemocyanins. Hoppe-Seyler's Zeitschrift für Physiologische Chemie 362: 185-188.
    • Markl J, Savel A et Linzen B. 1981b. Hemocyanins in spiders. XIV. Subunit composition of dissociation intermediates, and its bearing on the quaternary structure of Eurypelma hemocyanin. Hoppe-Seyler's Zeitschrift für Physiologische Chemie 362: 1255-1262.
    • Markl J, Decker H, Linzen B, Schutter WG et Van Bruggen EF. 1982. Hemocyanins in spiders. XV. The role of individual subunits in the assembly of Eurypelma hemocyanin. Hoppe-Seyler's Zeitschrift für Physiologische Chemie 363: 73-87.
    • Mauro NA et Mangum CP. 1982a. The role of the blood in the temperature dependence of oxidative metabolism in decapod crustaceans. 1: intraspecific responses to seasonal differences in temperature. Journal of Experimental Zoology 219: 179-188.
    • Michard G, Albarède F, Michard A, Minster J-F, Charlou J-L et Tan N. 1984. Chemistry of solutions from the 13°N East Pacific Rise hydrothermal site. Earth and Planetary Science Letters 67: 297-307.
    • Renninger GH, Kass L, Gleeson RA, Van Dover CL, Battelle B-A, Jinks RN, Herzog ED et Chamberlain SC. 1995. Sulfide as a chemical stimulus for deep-sea hydrothermal vent shrimp. Biological Bulletin 189: 69-76.
    • Reynolds ES. 1963. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. Journal of Cell Biology 17: 208-212.
    • Rieley G, Van Dover CL, Hedrick DB et Eglinton G. 1999. Trophic ecology of Rimicaris exoculata: a combined lipid abundance/stable isotope approach. Marine Biology 133: 495-499.
    • Riggs AF. 1991. Aspects of the origin and evolution of non-vertebrate hemoglobins. American Zoologist 31: 535-545.
    • Riso RD, Le Corre P et Chaumery CJ. 1997. Rapid and simultaneous analysis of trace metals (Cu, Pb and Cd) in seawater by potentiometric stripping analysis. Analytica Chimica Acta 351: 83-89.
    • Robertson JD. 1953. Further studies on ionic regulation in marine invertebrates. Journal of Experimental Biology 30: 277-296.
    • Savel-Niemann A, Markl J et Linzen B. 1988. Hemocyanins in spiders. XXII. Range of allosteric interaction in a four-hexamer hemocyanin. Cooperativity and Bohr effect in dissociation intermediates. Journal of Molecular Biology 204: 385-395.
    • Taylor AC et Spicer JI. 1896. Oxygen-transporting properties of the blood of two semiterrestrial amphipods, Orchestia gammarellus (Pallas) and O. mediterranea (Costa). Journal of Experimental Marine Biology and Ecology 97: 135-150.
    • Figure II-14 : Photo III-10 : Figure VI-2 : Figure VII-2 :
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article