LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: John Wiley and Sons Inc.
Journal: The Febs Journal
Languages: English
Types: Article
Subjects: oncometabolites, dioxygenase, cancer, metabolism, epigenetics, State?of?the?Art Review
Increased glucose metabolism in cancer cells is a phenomenon that has been known for over 90 years, allowing maximal cell growth through faster ATP production and redistribution of carbons towards nucleotide, protein and fatty acid synthesis. Recently, metabolites that can promote tumorigeneis by altering the epigenome have been identified. These ‘oncometabolites’ include the tricarboxylic acid cycle metabolites succinate and fumarate, whose levels are elevated in rare tumours with succinate dehydrogenase and fumarate hydratase mutations, respectively. 2-Hydroxyglutarate is another oncometabolite; it is produced de novo as a result of the mutation of isocitrate dehydrogenase, and is commonly found in gliomas and acute myeloid leukaemia. Interestingly, the structural similarity of these oncometabolites to their precursor metabolite, α-ketoglutarate, explains the tumorigenic potential of these metabolites, by competitive inhibition of a superfamily of enzymes called the α-ketoglutarate-dependent dioxygenases. These enzymes utilize α-ketoglutarate as a cosubstrate, and are involved in fatty acid metabolism, oxygen sensing, collagen biosynthesis, and modulation of the epigenome. They include enzymes that are involved in regulating gene expression via DNA and histone tail demethylation. In this review, we will focus on the link between metabolism and epigenetics, and how we may target oncometabolite-induced tumorigenesis in the future.

Share - Bookmark

Cite this article