LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Ogashawara, Igor; Bastos, Vanessa (2012)
Publisher: Multidisciplinary Digital Publishing Institute
Journal: Remote Sensing
Languages: English
Types: Article
Subjects: heat island, Q, brightness temperature, Science, correlation matrix, NDVI, NDWI, land cover, NDBI
Identifiers:doi:10.3390/rs4113596
With more than 80% of Brazilians living in cities, urbanization has had an important impact on climatic variations. São José dos Campos is located in a region experiencing rapid urbanization, which has produced a remarkable Urban Heat Island (UHI) effect. This effect influences the climate, environment and socio-economic development on a regional scale. In this study, the brightness temperatures and land cover types from Landsat TM images of São José dos Campos from 1986, 2001 and 2010 were analyzed for the spatial distribution of changes in temperature and land cover. A quantitative approach was used to explore the relationships among temperature, land cover areas and several indices, including the Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI) and Normalized Difference Built-up Index (NDBI). The results showed that urban and bare areas correlated positively with high temperatures. Conversely, areas covered in vegetation and water correlated positively with low temperatures. The indices showed that correlations between the NDVI and NDWI and temperature were low (<0.5); however, a moderate correlation was found between the NDBI and temperature.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Lombardo, M.A. Ilha de Calor Nas Metrópoles: O Exemplo de São Paulo (in Portuguese), 1st ed.; Hucitec: São Paulo, Brazil, 1985; p. 244.
    • 2. Oke, T.R. Boundary Layer Climates, 2nd ed.; Methuen: London, UK, 1987; p. 435.
    • 3. Tan, J.; Zheng, Y.; Tang, X.; Guo, C.; Li, L.; Song, G.; Zhen, X.; Yuan, D.; Kalkstei, A.J.; Li, F.; et al. The urban heat island and its impact on heat waves and human health in Shanghai. Int J. Biometeorol. 2010, 54, 75-84.
    • 4. Tarifa, J.R. Análise comparativa da temperatura e umidade na área urbana e rural de São José dos Campos (in Portuguese). Boletim de Geografia Teorética 1977, 4, 59-80.
    • 5. Ashworth, J.R. The influence of smoke and hot gases from factory chimneys on rainfall. Q. J. Roy. Meteorol. Soc. 1929, 55, 341-350.
    • 6. Chandler, T.J. The Climate of London, 1st ed.; Hutchinson & Co.: London, UK, 1965.
    • 7. Voogt, J.A. Urban Heat Island: Hotter Cities; ActionBioscience: North Port, FL, USA, 2004. Available online: http://www.actionbioscience.org/environment/voogt.html (accessed on 10 October 2012).
    • 8. Fabrizi, R.; Bonafoni, S.; Biondi, R. Satellite and ground-based sensors for the urban heat island analysis in the City of Rome. Remote Sens. 2010, 2, 1400-1415.
    • 9. Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370-384.
    • 10. Bechtel, B.; Zaksek, K.; Hoshyaripour, G. Downscaling land surface temperature in an urban area: A case study for Hamburg, Germany. Remote Sens. 2012, 4, 3184-3200.
    • 11. Rao, P.K. Remote sensing of urban “heat islands” from an environmental satellite. Bull. Am. Meteorol. Soc. 1972, 53, 647-648.
    • 12. Baptista, G.M.M. Estudo multitemporal do fenômeno de ilhas de calor no Distrito Federal (in Portuguese). Revista Meio Ambiente 2002, 02, 03-17.
    • 13. Xiong, Y.; Huang, S.; Chen, F.; Ye, H.; Wang, C.; Zhu, C. The impacts of rapid urbanization on the thermal environment: A remote sensing study of Guangzhou, South China. Remote Sens. 2012, 4, 2033-2056.
    • 14. Rinner, C.; Hussain, M. Toronto's urban heat island-Exploring the relationship between land use and surface temperature. Remote Sens. 2011, 3, 1251-1265.
    • 15. Costa, P.E.O. Legislação Urbanística e Crescimento Urbano em São José dos Campos (in Portuguese). Master Thesis, Universidade de São Paulo, São Paulo, Brasil, 2007.
    • 16. Câmara, G.; Souza, R.C.M.; Freitas, U.M.; Garrido, J.C.P. Spring: Integrating remote sensing and GIS with object-oriented data modelling. Comput. Graph. 1996, 15, 13-22.
    • 17. Rees, W.G. Physical Principles of Remote Sensing, 2nd ed.; Cambrigde University Press: Cambrigde, UK, 2001; p. 343.
    • 18. Cristóbal, J.; Jiménez-Muñoz, J.C.; Sobrino, J.A.; Ninyerola, M.; Pons, X. Improvements in land surface temperature retrieval from the Landsat series thermal band using water vapor and air temperature. J. Geophys. Res. 2009, 114, 1-16.
    • 19. Jiménez-Muñoz, J.C.; Sobrino, J.A. A generalized single-channel method for retrieving land surface temperature from remote sensing data. J. Geophys. Res. 2003, 108, 1-9.
    • 20. Chen, Y.; Wang, J.; Li, X. A study on urban thermal field in summer based on satellite remote sensing. Remote Sens. Land Resour. 2002, 4, 55-59.
    • 21. Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land surface temperature retrieval from Landsat TM 5. Remote Sens. Environ. 2004, 90, 434-440.
    • 22. Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. In Proceedings of the Third ERTS Symposium NASA SP-351, Washignton, DC, USA, 10-14 December 1973; Volume 1, pp. 309-317.
    • 23. Gao, B.C. NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257-266.
    • 24. Zha, Y.; Gao, J.; Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Remote Sens. 2005, 24, 583-594.
    • 25. Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+ and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893-903.
    • 26. FLAASH Module. Atmospheric Correction Module: QUAC and FLAASH User's Guide; Version 4.7; ITT Visual Information Solutions: Boulder, CO, USA, 2009; p. 44.
    • 27. Ponzoni, F.J.; Shimabukuro, Y.E. Sensoriamento Remoto no Estudo da Vegetação, 1st ed.; Parênteses: São José dos Campos, Brazil, 2009.
    • 28. Chen, X.L.; Zhao, H.M.; Li, P.X.; Yin, Z.Y. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sens. Environ. 2006, 104, 133-146.
    • 29. Bosch, D.D.; Cosh, M.H. SMEX03 Landsat Thematic Mapper NDVI and NDWI: Georgia; National Snow and Ice Data Center: Boulder, CO, USA, 2008. Available online: http://nsidc.org/ data/docs/daac/nsidc0330_smex03_srs_ndvi_ndwi_ga.gd.html (accessed on 10 October 2012).
    • 30. Jackson, T.J.; Cosh, M.H. SMEX03 Landsat Thematic Mapper NDVI and NDWI: Oklahoma; National Snow and Ice Data Center: Boulder, CO, USA, 2007. Available online: http://nsidc.org/ data/docs/daac/nsidc0330_smex03_srs_ndvi_ndwi_ga.gd.html (accessed on 10 October 2012).
    • 31. DeAlwis, D.A.; Easton, Z.M.; Dahlke, H.E.; Philpot, W.D.; Steebhuis, T.S. Unsupervised classification of saturated areas using a time series of remotely sensed images. Hydrol. Earth Syst. Sci. Discuss. 2007, 4, 1663-1696.
    • 32. Liu, L.; Zhang, Y. Urban heat island analysis using the Landsat TM data and ASTER data: A case study in Hong Kong. Remote Sens. 2011, 3, 1535-1552.
    • 33. Kamusoko, C.; Aniya, M. Hybrid classification of Landsat data and GIS for land use/cover change analysis of the Bindura district, Zimbabwe. Int. J. Remote Sens. 2009, 30, 97-115.
    • 34. R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2012. Available online: http://www.R-project.org (accessed on 08 September 2012).
    • 35. Pearson, K. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Philos. Mag. Lett. 1990, 50, 157-175.
    • 36. Manno, I. Introduction to the Monte Carlo Method; Akadémia Kiado: Budapest, Hungary, 1999.
    • 37. IBGE. 2010 Population Census. Available on: http://www.ibge.gov.br/english/estatistica/ populacao/censo2010/default.shtm (accessed on 5 September 2012).
    • 38. Silva, M.A. Contribuição ao Estudo do Processo de Industrialização no Município de São José dos Campos-SP (in Portuguese). M.Sc. Thesis, Universidade do Vale do Paraíba, São José dos Campos, Brazil, 2002.
    • 39. Maia, L.P.; Raventos, J.S.; Oliveira, P.M.P.; Meireles, A.J.A. Alterações climáticas na região de Fortaleza causadas por fatores naturais e antrópicos (in Portuguese). Revista de Geologia 1996, 9, 111-121.
    • 40. Bellinaso, H.; Demattê, J.A.M.; Romeiro, S.A. Soil spectral library and its use in soil classification (in Portuguese). Revista Brasileira de Ciência do Solo 2010, 34, 861-870.
    • 41. Espig, S.A.; Reis, I.A.; Araújo, E.P.; Formaggio, A.R. Relação Entre o Fator de Reflectância e o Teor de Óxido de Ferro em Latossolos Brasileiros (in Portuguese). In Proceedings of Simpósio Brasileiro de Sensoriamento Remoto, Goiânia, GO, Brasil, 16-21 April 2005; pp. 371-379.
    • 42. Nicacias, M.M. Evaluating the Effect of Moisture Stress on Tomato Using Non-Destructive Remote Sensing Techniques. Master Thesis, University of Limpopo, Mankweng, South Africa, 2009.
    • 43. Moura, Y.M.; Galvão, L.S.; dos Santos, J.R.; Roberts, D.A.; Breunig, F.M. Use of MISR/Terra data to study intra- and inter-annual EVI variations in the dry season of tropical forest. Remote Sens. Environ. 2012, 127, 260-270.
    • 44. Price, J.C. Using spatial context in satellite data to infer regional scale evapotranspiration. IEEE Trans. Geosci. Remote Sens. 1990, 28, 940-948.
    • 45. Reuter, D.; Richardson, C.; Irons, J.; Allen, R.; Anderson, M.; Budinoff, J.; Casto, G.; Coltharp, C.; Finneran, P.; Forsbacka, B.; et al. The Thermal Infrared Sensor on the Landsat Data Continuity Mission. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25-30 July 2010; pp. 754-757.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok