Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Sperna Weiland, F.C.; Beek, L.P.H. van; Kwadijk, J.C.J.; Bierkens, M.F.P. (2010)
Publisher: Copernicus Publications
Languages: English
Types: Article
Subjects: DOAJ:Earth and Environmental Sciences, G, Geography. Anthropology. Recreation, Technology, Physical geography, TD1-1066, DOAJ:Geography, T, GE1-350, DOAJ:Environmental Sciences, GB3-5030, Environmental technology. Sanitary engineering, Environmental sciences
Data from General Circulation Models (GCMs) are often used to investigate hydrological impacts of climate change. However GCM data are known to have large biases, especially for precipitation. In this study the usefulness of GCM data for hydrological studies, with focus on discharge variability and extremes, was tested by using bias-corrected daily climate data of the 20CM3 control experiment from a selection of twelve GCMs as input to the global hydrological model PCR-GLOBWB. Results of these runs were compared with discharge observations of the GRDC and discharges calculated from model runs based on two meteorological datasets constructed from the observation-based CRU TS2.1 and ERA-40 reanalysis. In the first dataset the CRU TS 2.1 monthly timeseries were downscaled to daily timeseries using the ERA-40 dataset (<i>ERA6190</i>). This dataset served as a best guess of the past climate and was used to analyze the performance of PCR-GLOBWB. The second dataset was created from the ERA-40 timeseries bias-corrected with the CRU TS 2.1 dataset using the same bias-correction method as applied to the GCM datasets (<i>ERACLM</i>). Through this dataset the influence of the bias-correction method was quantified. The bias-correction was limited to monthly mean values of precipitation, potential evaporation and temperature, as our focus was on the reproduction of inter- and intra-annual variability. <br><br> After bias-correction the spread in discharge results of the GCM based runs decreased and results were similar to results of the ERA-40 based runs, especially for rivers with a strong seasonal pattern. Overall the bias-correction method resulted in a slight reduction of global runoff and the method performed less well in arid and mountainous regions. However, deviations between GCM results and GRDC statistics did decrease for <i><span style="border-top: 1px solid #000; color: #000;">Q</span></i>, <i>Q90</i> and IAV. After bias-correction consistency amongst models was high for mean discharge and timing (<i>Qpeak</i>), but relatively low for inter-annual variability (IAV). This suggests that GCMs can be of use in global hydrological impact studies in which persistence is of less relevance (e.g. in case of flood rather than drought studies). Furthermore, the bias-correction influences mean discharges more than extremes, which has the positive consequence that changes in daily rainfall distribution and subsequent changes in discharge extremes will also be preserved when the bias-correction method is applied to future GCM datasets. However, it also shows that agreement between GCMs remains relatively small for discharge extremes. <br><br> Because of the large deviations between observed and simulated discharge, in which both errors in climate forcing, model structure and to a lesser extent observations are accumulated, it is advisable not to work with absolute discharge values for the derivation of future discharge projections, but rather calculate relative changes by dividing the absolute change by the absolute discharge calculated for the control experiment.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Alcamo, J., Henrichs, T., and Ro¨sch, T.: World water in 2025: Global modeling and scenario analysis for the world commission on water for the 21st century, Kassel World Water Series Report No. 2, Center for Environmental Systems Research, University of Kassel, Germany, 2000.
    • Alcamo, J. and Henrichs T.: Critical regions: A model-based estimation of world water resources sensitive to global changes, Aq. Sci., 64, 352-263, 2002.
    • Alcamo, J., Do¨ll, P., Henrichs, T., Kaspar, F., Lehner, B., Ro¨sch, T., and Siebert, S.: Development and testing of the WaterGAP 2 global model of water use and availability, Hydrol. Sci. J., 48(3), 317-337, 2003.
    • Allan, R. P. and Soden, B. J.: Atmospheric warming and the amplification of precipitation extremes, Science, 321, 1481-1484, doi:10.1126/science.1160787, 2008.
    • Allen, R. G., Pereira, L. S., Raes, D., and Smith M.: Crop evapotranspiration: FAO Irrigation and drainage paper 56, FAO, Rome, Italy, 1998.
    • Allen, M. R. and Ingram W. J.: Constraints on the future changes in climate and the hydrological cycle, Nature, 419, 224-232, 2002.
    • Arnell, N. W.: A simple water balance model for the simulation of streamflow over a large geographic domain, J. Hydrol., 217, 314-355, 1999.
    • Arnell, N. W.: Effects of IPCC SRES* emissions scenarios on river runoff: a global perspective, Hydrol. Earth Syst. Sci., 7, 619- 641, doi:10.5194/hess-7-619-2003, 2003.
    • Baumgartner, A. and Reichel, E.: The world water balance: Mean annual global, continental and maritime precipitation, evaporation and runoff, Elsevier, Amsterdam, 179 pp., 1975.
    • Beck, C., Grieser, J., and Rudolf, B.: A new monthly precipitation climatology for the global land areas for the period 1951 to 2000, Climate Status Report 2004, pp. 181-190, German Weather Service, Offenbach, Germany, 2004.
    • Beven, K.: How far can we go in distributed hydrological modelling?, Hydrol. Earth Syst. Sci., 5, 1-12, doi:10.5194/hess5-1-2001, 2001.
    • Bierkens, M. F. P. and van Beek, L. P.: Seasonal predictability of european discharge: NAO and hydrological response time, J Hydrometeorol, 10, 953-968, doi:10.1175/2009JHM10341, 2009.
    • Boorman, D. B. and Sefton, C. E. M.: Recognizing the Uncertainty in the Quantification of the Effects of Climate Change on Hydrological Response, Climatic Change, 35(4), 415-434, 1997.
    • Brouwer, C. and Heibloem, M.: Irrigation water management: Irrigation water needs, FAO, Rome, Italy, 1986.
    • Buytaert, W., Ce´lleri, R., and Timbe, L.: Predicting climate change impacts on water resources in the tropical Andes: Effects of GCM uncertainty, Geophys. Res. Lett., 36, L07406, doi:10.1029/2008GL037048, 2009.
    • Chen, J. and Bosilovich, B. G.: Hydrological variability and trends in global reanalyses, 19th Conference on Climate Variability and Change, San Antonio, Texas, January 2007, JP4.4, 2007.
    • Christensen, N. S. and Lettenmaier, D. P.: A multimodel ensemble approach to assessment of climate change impacts on the hydrology and water resources of the Colorado River Basin, Hydrol. Earth Syst. Sci., 11, 1417-1434, doi:10.5194/hess-11-1417-2007, 2007.
    • Cook, K. H. and Vizy, E. K.: Coupled Model Simulations of the West African Monsoon System: Twentieth- and Twenty-FirstCentury Simulations, J. Climate, 19, 3681-3703, 2006.
    • Covey, C., AchutaRao, K. M., Cubasch, U., Jones, P., Lambert, S. J., Mann, M. E., Phillips T. J., and Taylor K. E.: An overview of results from the coupled model intercomparison project, Global Planet. Change., 37, 103-133, doi:10.1016/S0921-8181(02)00193-5, 2003.
    • Dai, A.: Precipiation characteristics in eighteen coupled climate models, Q. J. Am. Meteor. Soc., 19, 4605-4630, 2006.
    • Do¨ll, P. and Lehner, B.: Validating of a new global 30-minute drainage direction map, J. Hydrol., 258, 214-231, 2002.
    • Do¨ll, P., Kaspar, F., and Lehner, B.: A global hydrological model for deriving water availability indicators: model tuning and validation, J. Hydrol., 270, 105-134, 2003.
    • Fekete, B. M., Vo¨ro¨smarty, C. J., and Grabs W.: Global, Composite Runoff Fields Based on Observed River Discharge and Simulated Water Balances, Technical Report 22, Global Runoff Data Centre, Koblenz, Germany, 2000.
    • Fekete, B. M., Vo¨ro¨smarty, C. J., Roads, J. O., and Willmott, C. J.: Uncertainties in precipitation and their impacts on runoff estimates, J. Climate, 17, 294-304, 2004.
    • Fiedler, K. and Do¨ll, P.: Global modelling continental water storage changes - sensitivity to different climate data sets, Adv. Geosci., 11, 63-68, 2007, http://www.adv-geosci.net/11/63/2007/.
    • Fowler, H. J. and Kilsby, C.G.: Using regional climate model data to simulate historical and future ruver flows in northwest England, Climatic Change, 80, 337-367, 2007.
    • Gerten, D., Schaphoff, S., Haberlandt, U., Lucht, W., and Sitch, S.: Terrestrial vegetation and water balance - hydrological evaluation of a dynamic global vegetation model, J. Hydrol., 286, 249-270, 2004.
    • GRDC: Long Term Mean Annual freshwater Surface Water Fluxes into the World Oceans, Comparisons of GRDC freshwater flux estimate with literature, http://grdc.bafg.de/servlet/is/7083, 2004 GRDC: Major River Basins of the World / Global Runoff Data Centre, D - 56002, Federal Institute of Hydrology (BfG), Koblenz, Germany, 2007.
    • Hagemann, S., Arpe, K., and Bengtsson, L.: Validation of the hydrological cycle of ERA-40, Reports on earth system science, Max Planck Institute, Hamburg, Germany, 2005.
    • Hagemann, S., Go¨ttel, H., Jacob, D., Lorenz, P., and Roeckner, E.: Improved regional scale processes reflected in projected hydrological changes over large European catchments, Clim. Dynam., 32, 767-781, doi:10.1007/s00382-008-0403-9, 2009.
    • Immerzeel, W. W., van Beek, L. P. H. and Bierkens, M. F. P.: Climate change will affect the Asian water towers, Science, 328, 5984, 1382-1385, doi:10.1126/ science.1183188, 2010.
    • Ines, A. V. M. and Hansen, J. W.: Bias correction of daily GCM rainfall for crop simulation studies, Agr. Forest Meteorol., 138, 44-53, 2006.
    • IPCC: Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007.
    • Johnson, F. and Sharma, A.: Measurement of GCM skill in predicting variables relevant for hydroclimatological assessments, J. Climate, 22, 16, 4373-4382, doi:10.1175/2009JCLI2681.1, 2009.
    • Kay, A. L. and Davies, V. A.: Calculating potential evaporation from climate model data: A source of uncertainty for hydrological climate change impacts, J. Hydrol., 358, 221-239, 2008.
    • Kay, A. L., Davies, H. N., Bell, V. A., and Jones R. G.: Comparison of uncertainty sources for climate change impacts: flood frequency in England, Climatic Change, 92, 41-63, 2009.
    • Korzun, V. I., Sokolov, A. A., Budyko, M. I., Voskresensky, K. P., Kalinin, G. P., Konoplyantsev, A. A., Korotkevich, E. S., and L'vovitch, M. I.: World Water Balance and Water Resources of the Earth, UNESCO, 663 pp., 1978.
    • L'vovich, M. I.: World water resources and their future, American Geophysical Union, Washington DC, 1979
    • Leander, R. and Buishand, A. T.: Resampling of regional climate model output for the simulation of extreme river flows, J. Hydrol., 332, 487-496, 2007.
    • Lehner, B. and Do¨ll, P.: Development and validation of a global database of lakes, reservoirs and wetlands, J. Hydrol., 296, 1-22, 2004.
    • Lehner, B., Do¨ll, P., Alcamo, J., Henrichs, T., and Kaspar, F.: Estimating the impact of global change on flood and drought risks in Europe: a continental, integrated analysis, Climatic Change, 75, 273-299, 2006.
    • Liu, J., Wiberg, D., Zehnder, A. J. B., and Yang, H.: Modelling the role of irrigation in winter wheat yield, crop water productivity, and production in China, Irrig. Sci., 26(1), 21-33, 2007.
    • Liu, J., Zehnder, A. J. B. and Yang, H.: Global consumptive water use for crop production: The importance of green water and virtual water, Water Resour. Res., 45, W05428, doi:10.1029/2007WR006051, 2009.
    • Meehl, G. A., Zwiers, F., Evans, J., Knutson, T., Mearns, L., and Whetton, P.: Trends in extreme weather and climate events: Issues related to modeling extremes in projections of future climate change, B. Am. Meteorol. Soc., 81(3), 413-416, 2000.
    • Monteith, J. L.: Evaporation and environment, Symp. Soc. Exp. Biol., 19, 205-234, 1965.
    • Murphy, J. M., Sexton, D. M. H., Barnett, D. N., Jones, G. S., Webb, M. J., Collins, M., and Stainforth, D. A.: Quantification of modelling uncertainties in a large ensemble of climate change simulations, Nature, 430, 768-772, 2004.
    • Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models part I - A discussion of principles, J. Hydrol., 10, 3, 282-290, 1970.
    • New, M., Hulme, M., and Jones, P.: Representing TwentiethCentury space-time climate variability. Part 1: Development of a 1961-90 mean monthly terrestrial climatology, J. Climate, 12(3), 829-856, 1999.
    • New, M., Hulme, M., and Jones, P.: Representing TwentiethCentury Space-Time Climate Variability. Part II: Development of 1901-96 Monthly Grids of Terrestrial Surface Climate, J. Climate, 13, 13(2217-2238), 2000.
    • Nijssen, B., O'Donnel, G. M., and Lettenmaier, D. P.: Predicting the discharge of global rivers, Am. Meteorol. Soc., 3307-3323, 2001.
    • Oudin, L., Hervieu, F., Michel, C., Perrin, C., Andre´assian, V., Anctil, F., and Loumagne, C.: Which potential evapotranspiration input for a lumped rainfall-runoff model? Part 2 - Towards a simple and efficient potential evapotranspiration model for rainfall-runoff modeling, J. Hydrol., 303, 290-306, 2005.
    • Perkins, S. E. and Pitman A. J.: Do weak AR4 models bias projections of future climate changes over Australia? Climatic change, 93, 527-558, doi:10.1007/s10584-008-9502-1, 2009.
    • Prudhomme, C., Reynard, N., and Crooks, S.: Downscaling of global climate models for flood frequency analysis: where are we now?, Hydrol. Process., 16, 1137-1150, doi:10.1002/hyp.1054, 2002.
    • Prudhomme, C. and Davies, H.: Assessing uncertainties in climate change impact analyses on the river flow regimes in the UK. Part 2: Future climate, Climatic Change, 93, 197-222, doi:10.1007/s10584-008-9461-6, 2008.
    • Sheffield, J., Andreadis, K. M., Wood, E. F., and Lettenmaier, D. P.: Global and continental drought in the second half of the 20th century: severity-area-duration analysis and temporal variability of large-scale events, J. Climate, 22(8), 1962-1981, 2009.
    • Shiklomanov, I. A.: Assessment of water resources and availability in the world. Comprehensive assessment of the freshwater resources of the world, Stockholm, Stockholm Environment Institute, 88 pp., 1997.
    • Strzepek, K. M. and Yates, D. N.: Climate change impacts on the hydrologic resources of Europe: a simplified continental scale analysis, Climatic Change, 36, 79-92, 1997.
    • Trenberth, K. E., Dai, A., Rasmussen, R. M., and Parsons, D. B.: The changing character of precipitation, B. Am. Meteor. Soc., 84, 1205-1217, 2003.
    • Troccoli, A. and Kallberg, P.: Precipitation correction in the ERA40 reanalysis. ERA-40 Project Rep. Series 13, 6 pp., ECMWF, Reading, UK, 2004.
    • UN, 2nd UN World Water Development Report: WWDRII data download page, http://wwdrii.sr.unh.edu/download.html, 2006.
    • Uppala, S. M., Ka˚llberg, P. W., Simmons, A. J., et al.: The ERA-40 re-analysis, Q. J. Roy. Meteor. Soc., 131, 2961-3012, 2006.
    • Van Beek, L. P. H.: Forcing PCR-GLOBWB with CRU meteorological data, Utrecht University, Utrecht, Netherlands: http://vanbeek.geo.uu.nl/suppinfo/vanbeek2008.pdf, 2008.
    • Van Beek, L. P. H. and Bierkens, M. F. P.: The Global Hydrological Model PCR-GLOBWB: Conceptualization, Parameterization and Verification, Report Department of Physical Geography, Utrecht University, Utrecht, Netherlands, available at: http:// vanbeek.geo.uu.nl/suppinfo/vanbeekbierkens2009.pdf, 2009.
    • Varis, O., Kajander, T., and Lemmela, R.: Climate water: from climate models to water resources management and vice versa, Climatic Change, 66, 321-344, 2004.
    • Viviroli, D., Archer, D. R., Buytaert, W., Fowler, H. J., Greenwood, G. B., Hamlet, A. F., Huang, Y., Koboltschnig, G., Litaor, M. I., Lo´pez-Moreno, J. I., Lorentz, S., Scha¨dler, B., Schwaiger, K., Vuille, M., and Woods, R.: Climate change and mountain water resources: overview and recommendations for research, management and politics, Hydrol. Earth Syst. Sci. Discuss., 7, 2829-2895, doi:10.5194/hessd-7-2829-2010, 2010.
    • Vo¨ro¨smarty, C. J., Fekete, B., and Tucker, B. A.: River Discharge Database, Version 1.1 (RivDIS v1.0 supplement), available through the Institute for the Study of Earth, Oceans, and Space/University of New Hampshire, Durham NH, USA, 1998.
    • Vo¨ro¨smarty, C. J., Green, P., Salisbury, J., and Lammers, R. B.: Global Water Resources: Vulnerability from Climate Change and Population Growth, Science 289, 284-288, 2000.
    • Wada, Y., Van Beek, L. P. H., Viviroli, D., Du¨rr, H. H., Weingartner, R., and Bierkens, M. F. P.: Water Stress over the Year: Quantitative Analysis of Seasonality and Severity on a Global Scale, MSc Thesis, University Utrecht, Utrecht, Netherlands, available at: http://igitur-archive.library.uu.nl/student-theses/ 2010-0308-200229/UUindex.html, 2008.
    • Wide´n-Nilsson, E., Halldin, S., and Xu, C.: Global water-balance modelling with WASMOD-M: Parameter estimation and regionalization, J. Hydrol. 340, 105-118, 2007.
    • Wilby, R. L., Wigley, T. M. L., Conway, D., Jones, P. D., Hewitson, B. C., Main, J., and Wilks, D. S.: Statistical downscaling of general circulation model output: A comparison of methods, Water Resour. Res., 34, 11, 2995-3008, 1998.
    • Wood, A. W., Leung, L. R., Sridhar, V., and Lettenmaier, D. P.: Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs, Climatic Change, 62, 189-216, 2004.
    • Zaitchik, B. F., Rodell, M., and Olivera, F.: Evaluation of the global land data assimilation system using river discharge data and a source-to-sink routing scheme, Water Resour. Res., 46, W06507, doi:10.1029/2009WR007811, 2010.
  • No related research data.
  • No similar publications.