LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Wang, Liaoyu; Wang, Dunhui; Cao, Qingqi; Zheng, Yuanxia; Xuan, Haicheng; Gao, Jinlong; Du, Youwei (2012)
Publisher: Nature Publishing Group
Journal: Scientific Reports
Languages: English
Types: Article
Subjects: Article
In the single-phase multiferroics, the coupling between electric polarization (P) and magnetization (M) would enable the magnetoelectric (ME) effect, namely M induced and modulated by E, and conversely P by H. Especially, the manipulation of magnetization by an electric field at room-temperature is of great importance in technological applications, such as new information storage technology, four-state logic device, magnetoelectric sensors, low-power magnetoelectric device and so on. Furthermore, it can reduce power consumption and realize device miniaturization, which is very useful for the practical applications. In an M-type hexaferrite SrCo2Ti2Fe8O19, large magnetization and electric polarization were observed simultaneously at room-temperature. Moreover, large effect of electric field-controlled magnetization was observed even without magnetic bias field. These results illuminate a promising potential to apply in magnetoelectric devices at room temperature and imply plentiful physics behind them.

Share - Bookmark

Cite this article