Remember Me
Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Hampe, Christiane S. (2012)
Publisher: Hindawi Publishing Corporation
Journal: Scientifica
Languages: English
Types: Article
Subjects: Review Article, R5-920, Medicine (General), Article Subject, Biology (General), QH301-705.5
The role of B cells in autoimmune diseases involves different cellular functions, including the well-established secretion of autoantibodies, autoantigen presentation and ensuing reciprocal interactions with T cells, secretion of inflammatory cytokines, and the generation of ectopic germinal centers. Through these mechanisms B cells are involved both in autoimmune diseases that are traditionally viewed as antibody mediated and also in autoimmune diseases that are commonly classified as T cell mediated. This new understanding of the role of B cells opened up novel therapeutic options for the treatment of autoimmune diseases. This paper includes an overview of the different functions of B cells in autoimmunity; the involvement of B cells in systemic lupus erythematosus, rheumatoid arthritis, and type 1 diabetes; and current B-cell-based therapeutic treatments. We conclude with a discussion of novel therapies aimed at the selective targeting of pathogenic B cells.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Dandel, M, Wallukat, G, Potapov, E, Hetzer, R. Role of β1-adrenoceptor autoantibodies in the pathogenesis of dilated cardiomyopathy. Immunobiology . 2011; 217 (5): 511-520
    • Riemekasten, G, Philippe, A, Näther, M. Involvement of functional autoantibodies against vascular receptors in systemic sclerosis. Annals of the Rheumatic Diseases . 2011; 70 (3): 530-536
    • Xia, Y, Kellems, RE. Is preeclampsia an autoimmune disease?. Clinical Immunology . 2009; 133 (1): 1-12
    • LaMarca, BD, Gilbert, J, Granger, JP. Recent progress toward the understanding of the pathophysiology of hypertension during preeclampsia. Hypertension . 2008; 51 (4): 982-988
    • Wenzel, K, Rajakumar, A, Haase, H. Angiotensin II type 1 receptor antibodies and increased angiotensin II sensitivity in pregnant rats. Hypertension . 2011; 58 (1): 77-84
    • Wenzel, K, Wallukat, G, Qadri, F. α1A-Adrenergic receptor-directed autoimmunity induces left ventricular damage and diastolic dysfunction in rats. PLoS One . 2010; 5 (2)
    • Luther, HP, Homuth, V, Wallukat, G. α1-Adrenergic receptor antibodies in patients with primary hypertension. Hypertension . 1997; 29 (2): 678-682
    • Borda, E, Pascual, J, Cossio, P. A circulating IgG in Chagas’ disease which binds to β-adrenoceptors of myocardium and modulates their activity. Clinical and Experimental Immunology . 1984; 57 (3): 679-686
    • Jahns, R, Boivin, V, Schwarzbach, V, Ertl, G, Lohse, M. Pathological autoantibodies in cardiomyopathy. Autoimmunity . 2008; 41 (6): 454-461
    • Faust, TW, Chang, EH, Kowal, C. Neurotoxic lupus autoantibodies alter brain function through two distinct mechanisms. Proceedings of the National Academy of Sciences of the United States of America . 2010; 107 (43): 18569-18574
    • Levite, M, Ganor, Y. Autoantibodies to glutamate receptors can damage the brain in epilepsy, systemic lupus erythematosus and encephalitis. Expert Review of Neurotherapeutics . 2008; 8 (7): 1141-1160
    • Lupsa, BC, Chong, AY, Cochran, EK, Soos, MA, Semple, RK, Gorden, P. Autoimmune forms of hypoglycemia. Medicine . 2009; 88 (3): 141-153
    • Jin, M, Hwang, SM, Davies, AJ, Shin, Y, Bae, JS. Autoantibodies in primary Sjogren’s syndrome patients induce internalization of muscarinic type 3 receptors. Biochimica et Biophysica Acta . 2012; 1822: 161-167
    • Hughes, EG, Peng, X, Gleichman, AJ. Cellular and synaptic mechanisms of anti-NMDA receptor encephalitis. Journal of Neuroscience . 2010; 30 (17): 5866-5875
    • Martin, F, Chan, AC. Pathogenic roles of B cells in human autoimmunity: insights from the clinic. Immunity . 2004; 20 (5): 517-527
    • Quigg, RJ. Complement and autoimmune glomerular diseases. Current Directions in Autoimmunity . 2004; 7: 165-180
    • Ando, T, Latif, R, Davies, TF. Thyrotropin receptor antibodies: new insights into their actions and clinical relevance. Best Practice and Research . 2005; 19 (1): 33-52
    • Michalek, K, Morshed, SA, Latif, R, Davies, TF. TSH receptor autoantibodies. Autoimmunity Reviews . 2009; 9 (2): 113-116
    • Howard, FM, Lennon, VA, Finley, J, Matsumoto, J, Elveback, LR. Clinical correlations of antibodies that bind, block, or modulate human acetylcholine receptors in myasthenia gravis. Annals of the New York Academy of Sciences . 1987; 505: 526-538
    • Susuki, K, Yuki, N, Schafer, DP. Dysfunction of nodes of Ranvier: a mechanism for anti-ganglioside antibody-mediated neuropathies. Experimental Neurology . 2012; 233 (1): 534-542
    • Ochi, Y, Hamazu, M, Kajita, Y, Nagata, A. Demonstration of anti-TSH antibody in TSH binding inhibitory immunoglobulin-positive sera of patients with Graves’ disease. Clinical Endocrinology . 2002; 56 (3): 405-412
    • Amigorena, S, Bonnerot, C. Fc receptor signaling and trafficking: a connection for antigen processing. Immunological Reviews . 1999; 172: 279-284
    • Lanzavecchia, A. Antigen-specific interaction between T and B cells. Nature . 1985; 314 (6011): 537-539
    • Celis, E, Zurawski, VR, Chang, TW. Regulation of T-cell function by antibodies: enhancement of the response of human T-cell clones to hepatitis B surface antigen by antigen-specific monoclonal antibodies. Proceedings of the National Academy of Sciences of the United States of America . 1984; 81 (21 I): 6846-6850
    • Takai, T. Fc receptors and their role in immune regulation and autoimmunity. Journal of Clinical Immunology . 2005; 25 (1): 1-18
    • Takai, T. Roles of Fc receptors in autoimmunity. Nature Reviews Immunology . 2002; 2 (8): 580-592
    • Celis, E, Chang, TW. Antibodies to hepatitis B surface antigen potentiate the response of human T lymphocyte clones to the same antigen. Science . 1984; 224 (4646): 297-299
    • Manca, F, Fenoglio, D, li Pira, G, Kunkl, A, Celada, F. Effect of antigen/antibody ratio on macrophage uptake, processing, and presentation to T cells of antigen complexed with polyclonal antibodies. Journal of Experimental Medicine . 1991; 173 (1): 37-48
    • Schalke, BCG, Klinkert, WEF, Wekerle, H, Dwyer, DS. Enhanced activation of a T cell line specific for acetylcholine receptor (AChR) by using anti-AChR monoclonal antibodies plus receptors. Journal of Immunology . 1985; 134 (6): 3643-3648
    • Nielsen, CH, Leslie, RGQ, Jepsen, BS, Kazatchkine, MD, Kaveri, SV, Fischer, E. Natural autoantibodies and complement promote the uptake of a self antigen, human thyroglobulin, by B cells and the proliferation of thyroglobulin-reactive CD4+ T cells in healthy individuals. European Journal of Immunology . 2001; 31 (9): 2660-2668
    • Nielsen, CH, Brix, TH, Leslie, RGQ, Hegedüs, L. A role for autoantibodies in enhancement of pro-inflammatory cytokine responses to a self-antigen, thyroid peroxidase. Clinical Immunology . 2009; 133 (2): 218-227
    • Amigorena, S, Salamero, J, Davoust, J, Fridman, WH, Bonnerot, C. Tyrosine-containing motif that transduces cell activation signals also determines internalization and antigen presentation via type III receptors for IgG. Nature . 1992; 358 (6384): 337-341
    • Abdul-Majid, KB, Stefferl, A, Bourquin, C. Fc receptors are critical for autoimmune inflammatory damage to the central nervous system in experimental autoimmune encephalomyelitis. Scandinavian Journal of Immunology . 2002; 55 (1): 70-81
    • Harbers, SO, Crocker, A, Catalano, G. Antibody-enhanced cross-presentation of self antigen breaks T cell tolerance. Journal of Clinical Investigation . 2007; 117 (5): 1361-1369
    • Shoenfeld, Y, Toubi, E. Protective autoantibodies: role in homeostasis, clinical importance, and therapeutic potential. Arthritis and Rheumatism . 2005; 52 (9): 2599-2606
    • Gronwall, C, Vas, J. Silverman GJ protective roles of natural IgM antibodies. Frontiers in Immunology . 2012; 3, article 66
    • Chou, MY, Fogelstrand, L, Hartvigsen, K. Oxidation-specific epitopes are dominant targets of innate natural antibodies in mice and humans. Journal of Clinical Investigation . 2009; 119 (5): 1335-1349
    • Hardy, RR, Hayakawa, K. Development of B cells producing natural autoantibodies to thymocytes and senescent erythrocytes. Springer Seminars in Immunopathology . 2005; 26 (4): 363-375
    • Ogden, CA, Kowalewski, R, Peng, Y, Montenegro, V, Elkon, KB. IGM is required for efficient complement mediated phagocytosis of apoptotic cells in vivo. Autoimmunity . 2005; 38 (4): 259-264
    • Quartier, P, Potter, PK, Ehrenstein, MR, Walport, MJ, Botto, M. Predominant role of IgM-dependent activation of the classical pathway in the clearance of dying cells by murine bone marrow-derived macrophages in vitro. European Journal of Immunology . 2005; 35 (1): 252-260
    • Boes, M, Schmidt, T, Linkemann, K, Beaudette, BC, Marshak-Rothstein, A, Chen, J. Accelerated development of IgG autoantibodies and autoimmune disease in the absence of secreted IgM. Proceedings of the National Academy of Sciences of the United States of America . 2000; 97 (3): 1184-1189
    • Ehrenstein, MR, Cook, HT, Neuberger, MS. Deficiency in serum immunoglobulin (Ig)M predisposes to development of IgG autoantibodies. Journal of Experimental Medicine . 2000; 191 (7): 1253-1258
    • Lewis, MJ, Malik, TH, Ehrenstein, MR, Boyle, JJ, Botto, M, Haskard, DO. Immunoglobulin M is required for protection against atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation . 2009; 120 (5): 417-426
    • Baumgarth, N, Tung, JW, Herzenberg, LA. Inherent specificities in natural antibodies: a key to immune defense against pathogen invasion. Springer Seminars in Immunopathology . 2005; 26 (4): 347-362
    • Holodick, NE, Tumang, JR, Rothstein, TL. Immunoglobulin secretion by B1 cells: differential intensity and IRF4-dependence of spontaneous IgM secretion by peritoneal and splenic B1 cells. European Journal of Immunology . 2010; 40 (11): 3007-3016
    • Griffin, DO, Holodick, NE, Rothstein, TL. Human B1 cells in umbilical cord and adult peripheral blood express the novel phenotype CD20+CD27+CD43+CD70− . Journal of Experimental Medicine . 2011; 208 (1): 67-80
    • Grönwall, C, Akhter, E, Oh, C, Burlingame, RW, Petri, M, Silverman, GJ. IgM autoantibodies to distinct apoptosis-associated antigens correlate with protection from cardiovascular events and renal disease in patients with SLE. Clinical Immunology . 2012; 142 (3): 390-398
    • Su, J, Hua, X, Concha, H, Svenungsson, E, Cederholm, A, Frostegård, J. Natural antibodies against phosphorylcholine as potential protective factors in SLE. Rheumatology . 2008; 47 (8): 1144-1150
    • Silverman, GJ, Srikrishnan, R, Germar, K. Genetic imprinting of autoantibody repertoires in systemic lupus erythematosus patients. Clinical and Experimental Immunology . 2008; 153 (1): 102-116
    • Oppezzo, P, Dighiero, G. Autoantibodies, tolerance and autoimmunity. Pathologie Biologie . 2003; 51 (5): 297-304
    • Bootsma, H, Spronk, PE, Hummel, EJ. Anti-double stranded DNA antibodies in systemic lupus erythematosus: detection and clinical relevance of IgM-class antibodies. Scandinavian Journal of Rheumatology . 1996; 25 (6): 352-359
    • Witte, T, Hartung, K, Sachse, C. IgM anti-dsDNA antibodies in systemic lupus erythematosus: negative association with nephritis. Rheumatology International . 1998; 18 (3): 85-91
    • Yurasov, S, Wardemann, H, Hammersen, J. Defective B cell tolerance checkpoints in systemic lupus erythematosus. Journal of Experimental Medicine . 2005; 201 (5): 703-711
    • Chan, OTM, Hannum, LG, Haberman, AM, Madaio, MP, Shlomchik, MJ. A novel mouse with B cells but lacking serum antibody reveals an antibody-independent role for B cells in murine lupus. Journal of Experimental Medicine . 1999; 189 (10): 1639-1647
    • Chesnut, RW, Grey, HM. Antigen presenting cells and mechanisms of antigen presentation. Critical Reviews in Immunology . 1985; 5 (3): 263-316
    • Rivera, A, Chen, CC, Ron, N, Dougherty, JP, Ron, Y. Role of B cells as antigen-presenting cells in vivo revisited: antigen-specific B cells are essential for T cell expansion in lymph nodes and for systemic T cell responses to low antigen concentrations. International Immunology . 2001; 13 (12): 1583-1593
    • Lanzavechia, A. Antigen uptake and accumulation in antigen-specific B cells. Immunological Reviews . 1987; 99 (1): 39-51
    • Watts, C, Davidson, HW. Endocytosis and recycling of specific antigen by human B cell lines. EMBO Journal . 1988; 7 (7): 1937-1945
    • Roth, R, Gee, RJ, Mamula, MJ. B lymphocytes as autoantigen-presenting cells in the amplification of autoimmunity. Annals of the New York Academy of Sciences . 1997; 815: 88-104
    • Harvey, BP, Gee, RJ, Haberman, AM, Shlomchik, MJ, Mamula, MJ. Antigen presentation and transfer between B cells and macrophages. European Journal of Immunology . 2007; 37 (7): 1739-1751
    • O’Neill, SK, Shlomchik, MJ, Glant, TT, Cao, Y, Doodes, PD, Finnegan, A. Antigen-specific B cells are required as APCs and autoantibody-producing cells for induction of severe autoimmune arthritis. Journal of Immunology . 2005; 174 (6): 3781-3788
    • Wong, FS, Wen, L, Tang, M. Investigation of the role of B-cells in type 1 diabetes in the NOD mouse. Diabetes . 2004; 53 (10): 2581-2587
    • Harris, DP, Haynes, L, Sayles, PC. Reciprocal regulation of polarized cytokine production by effector B and T cells. Nature Immunology . 2000; 1 (6): 475-482
    • Lund, FE, Garvy, BA, Randall, TD, Harris, DP. Regulatory roles for cytokine-producing B cells in infection and autoimmune disease. Current Directions in Autoimmunity . 2005; 8: 25-54
    • Duddy, ME, Alter, A, Bar-Or, A. Distinct profiles of human B cell effector cytokines: a role in immune regulation?. Journal of Immunology . 2004; 172 (6): 3422-3427
    • Mamula, MJ. Epitope spreading: the role of self peptides and autoantigen processing by B lymphocytes. Immunological Reviews . 1998; 164: 231-239
    • Manca, F, Fenoglio, D, Kunkl, A, Cambiaggi, C, Sasso, M, Celada, F. Differential activation of T cell clones stimulated by macrophages exposed to antigen complexed with monoclonal antibodies. A possible influence of paratope specificity on the mode of antigen processing. Journal of Immunology . 1988; 140 (9): 2893-2898
    • Manca, F, Kunkl, A, Fenoglio, D. Constraints in T-B cooperation related to epitope topology on E. coli β-galactosidase I. The fine specificity of T cells dictates the fine specificity of antibodies directed to conformation-dependent determinants. European Journal of Immunology . 1985; 15 (4): 345-350
    • Amigorena, S, Bonnerot, C. Role of B-cell and Fc receptors in the selection of T-cell epitopes. Current Opinion in Immunology . 1998; 10 (1): 88-92
    • Watts, C, Lanzavecchia, A. Suppressive effect of antibody on processing of T cell epitopes. Journal of Experimental Medicine . 1993; 178 (4): 1459-1463
    • Watts, C. Capture and processing of exogenous antigens for presentation on MHC molecules. Annual Review of Immunology . 1997; 15: 821-850
    • Lanzavecchia, A. Receptor-mediated antigen uptake and its effect on antigen presentation to class II-restricted T lymphocytes. Annual Review of Immunology . 1990; 8: 773-793
    • Berzofsky, JA. T-B reciprocity. An Ia-restricted epitope-specific circuit regulating T cell-B interaction and antibody specificity. Survey of Immunologic Research . 1983; 2 (3): 223-229
    • Simitsek, PD, Campbell, DG, Lanzavecchia, A, Fairweather, N, Watts, C. Modulation of antigen processing by bound antibodies can boost or suppress class II major histocompatibility complex presentation of different T cell determinants. Journal of Experimental Medicine . 1995; 181 (6): 1957-1963
    • Davidson, HW, Watts, C. Epitope-directed processing of specific antigen by B lymphocytes. Journal of Cell Biology . 1989; 109 (1): 85-92
    • Dai, Y, Carayanniotis, KA, Eliades, P. Enhancing or suppressive effects of antibodies on processing of a pathogenic T cell epitope in thyroglobulin. Journal of Immunology . 1999; 162 (12): 6987-6992
    • Martin, F, Chan, AC. B cell immunobiology in disease: evolving concepts from the clinic. Annual Review of Immunology . 2006; 24: 467-496
    • Ware, CF. Network communications: lymphotoxins, LIGHT, and TNF. Annual Review of Immunology . 2005; 23: 787-819
    • Kratz, A, Campos-Neto, A, Hanson, MS, Ruddle, NH. Chronic inflammation caused by lymphotoxin is lymphoid neogenesis. Journal of Experimental Medicine . 1996; 183 (4): 1461-1472
    • Drayton, DL, Ying, X, Lee, J, Lesslauer, W, Ruddle, NH. Ectopic LTαβ directs lymphoid organ neogenesis with concomitant expression of peripheral node addressin and a HEV-restricted sulfotransferase. Journal of Experimental Medicine . 2003; 197 (9): 1153-1163
    • Hutloff, A, Büchner, K, Reiter, K. Involvement of inducible costimulator in the exaggerated memory B cell and plasma cell generation in systemic lupus erythematosus. Arthritis and Rheumatism . 2004; 50 (10): 3211-3220
    • Drayton, DL, Liao, S, Mounzer, RH, Ruddle, NH. Lymphoid organ development: from ontogeny to neogenesis. Nature Immunology . 2006; 7 (4): 344-353
    • Aloisi, F, Pujol-Borrell, R. Lymphoid neogenesis in chronic inflammatory diseases. Nature Reviews Immunology . 2006; 6 (3): 205-217
    • Manzo, A, Paoletti, S, Carulli, M. Systematic microanatomical analysis of CXCL13 and CCL21 in situ production and progressive lymphoid organization in rheumatoid synovitis. European Journal of Immunology . 2005; 35 (5): 1347-1359
    • Astorri, E, Bombardieri, M, Gabba, S, Peakman, M, Pozzilli, P, Pitzalis, C. Evolution of ectopic lymphoid neogenesis and in situ autoantibody production in autoimmune nonobese diabetic mice: cellular and molecular characterization of tertiary lymphoid structures in pancreatic islets. Journal of Immunology . 2010; 185 (6): 3359-3368
    • Nacionales, DC, Weinstein, JS, Yan, XJ. B cell proliferation, somatic hypermutation, class switch recombination, and autoantibody production in ectopic lymphoid tissue in murine lupus. Journal of Immunology . 2009; 182 (7): 4226-4236
    • Wolf, SD, Dittel, BN, Hardardottir, F, Janeway, CA. Experimental autoimmune encephalomyelitis induction in genetically B cell-deficient mice. Journal of Experimental Medicine . 1996; 184 (6): 2271-2278
    • Fillatreau, S, Sweenie, CH, McGeachy, MJ, Gray, D, Anderton, SM. B cells regulate autoimmunity by provision of IL-10. Nature Immunology . 2002; 3 (10): 944-950
    • Gonnella, PA, Waldner, HP, Weiner, HL. B cell-deficient (μMT) mice have alterations in the cytokine microenvironment of the gut-associated lymphoid tissue (GALT) and a defect in the low dose mechanism of oral tolerance. Journal of Immunology . 2001; 166 (7): 4456-4464
    • Mizoguchi, A, Mizoguchi, E, Smith, RN, Preffer, FI, Bhan, AK. Suppressive role of B cells in chronic colitis of T cell receptor α mutant mice. Journal of Experimental Medicine . 1997; 186 (10): 1749-1756
    • Mizoguchi, A, Mizoguchi, E, Takedatsu, H, Blumberg, RS, Bhan, AK. Chronic intestinal inflammatory condition generates IL-10-producing regulatory B cell subset characterized by CD1d upregulation. Immunity . 2002; 16 (2): 219-230
    • Mauri, C, Gray, D, Mushtaq, N, Londei, M. Prevention of arthritis by interleukin 10-producing B cells. Journal of Experimental Medicine . 2003; 197 (4): 489-501
    • Lenert, P, Brummel, R, Field, EH, Ashman, RF. TLR-9 activation of marginal zone B cells in lupus mice regulates immunity through increased IL-10 production. Journal of Clinical Immunology . 2005; 25 (1): 29-40
    • Yin, Z, Bahtiyar, G, Zhang, N. IL-10 regulates murine lupus. Journal of Immunology . 2002; 169 (4): 2148-2155
    • Tian, J, Zekzer, D, Hanssen, L, Lu, Y, Olcott, A, Kaufman, DL. Lipopolysaccharide-activated B cells down-regulate Th1 immunity and prevent autoimmune diabetes in nonobese diabetic mice. Journal of Immunology . 2001; 167 (2): 1081-1089
    • Watanabe, R, Ishiura, N, Nakashima, H. Regulatory B cells (B10 cells) have a suppressive role in murine lupus: CD19 and B10 cell deficiency exacerbates systemic autoimmunity. Journal of Immunology . 2010; 184 (9): 4801-4809
    • Yanaba, K, Bouaziz, JD, Haas, KM, Poe, JC, Fujimoto, M, Tedder, TF. A regulatory B cell subset with a unique CD1dhiCD5+ phenotype controls T cell-dependent inflammatory responses. Immunity . 2008; 28 (5): 639-650
    • Fillatreau, S, Gray, D, Anderton, SM. Not always the bad guys: B cells as regulators of autoimmune pathology. Nature Reviews Immunology . 2008; 8 (5): 391-397
    • Bouaziz, JD, Yanaba, K, Tedder, TF. Regulatory B cells as inhibitors of immune responses and inflammation. Immunological Reviews . 2008; 224 (1): 201-214
    • Mauri, C, Ehrenstein, MR. The “short” history of regulatory B cells. Trends in Immunology . 2008; 29 (1): 34-40
    • Goetz, M, Atreya, R, Ghalibafian, M, Galle, PR, Neurath, MF. Exacerbation of ulcerative colitis after rituximab salvage therapy. Inflammatory Bowel Diseases . 2007; 13 (11): 1365-1368
    • Dass, S, Vital, EM, Emery, P. Development of psoriasis after B cell depletion with rituximab. Arthritis and Rheumatism . 2007; 56 (8): 2715-2718
    • Mauri, C, Bosma, A. Immune regulatory function of B cells. Annual Review of Immunology . 2012; 30: 221-241
    • Wardemann, H, Yurasov, S, Schaefer, A, Young, JW, Meffre, E, Nussenzweig, MC. Predominant autoantibody production by early human B cell precursors. Science . 2003; 301 (5638): 1374-1377
    • Halverson, R, Torres, RM, Pelanda, R. Receptor editing is the main mechanism of B cell tolerance toward membrane antigens. Nature Immunology . 2004; 5 (6): 645-650
    • Casellas, R, Shih, TA, Kleinewietfeld, M. Contribution of receptor editing to the antibody repertoire. Science . 2001; 291 (5508): 1541-1544
    • Hippen, KL, Schram, BR, Tze, LE, Pape, KA, Jenkins, MK, Behrens, TW. In vivo assessment of the relative contributions of deletion, anergy, and editing to B cell self-tolerance. Journal of Immunology . 2005; 175 (2): 909-916
    • Samuels, J, Ng, YS, Coupillaud, C, Paget, D, Meffre, E. Impaired early B cell tolerance in patients with rheumatoid arthritis. Journal of Experimental Medicine . 2005; 201 (10): 1659-1667
    • Menard, L, Samuels, J, Ng, YS, Meffre, E. Inflammation-independent defective early B cell tolerance checkpoints in rheumatoid arthritis. Arthritis and Rheumatism . 2011; 63 (5): 1237-1245
    • Panigrahi, AK, Goodman, NG, Eisenberg, RA, Rickels, MR, Naji, A, Prak, ETL. RS rearrangement frequency as a marker of receptor editing in lupus and type 1 diabetes. Journal of Experimental Medicine . 2008; 205 (13): 2985-2994
    • Shlomchik, MJ. Sites and stages of autoreactive B cell activation and regulation. Immunity . 2008; 28 (1): 18-28
    • Allen, CDC, Okada, T, Cyster, JG. Germinal-center organization and cellular dynamics. Immunity . 2007; 27 (2): 190-202
    • Chen, YF, Morel, L. Genetics of T cell defects in lupus. Cellular & Molecular Immunology . 2005; 2 (6): 403-409
    • Kumar, KR, Zhu, J, Bhaskarabhatla, M, Yan, M, Mohan, C. Enhanced expression of stem cell antigen-1 (Ly-6A/E) in lymphocytes from lupus prone mice correlates with disease severity. Journal of Autoimmunity . 2005; 25 (3): 215-222
    • Zhou, LJ, Smith, HM, Waldschmidt, TJ, Schwarting, R, Daley, J, Tedder, TF. Tissue-specific expression of the human CD19 gene in transgenic mice inhibits antigen-independent B-lymphocyte development. Molecular and Cellular Biology . 1994; 14 (6): 3884-3894
    • Engel, P, Zhou, LJ, Ord, DC, Sato, S, Koller, B, Tedder, TF. Abnormal B lymphocyte development, activation, and differentiation in mice that lack of overexpress the CD19 signal transduction molecule. Immunity . 1995; 3 (1): 39-50
    • Rickert, RC, Rajewsky, K, Roes, J. Impairment of T-cell-dependent B-cell responses and B-1 cell development in CD19-deficient mice. Nature . 1995; 376 (6538): 352-355
    • Sato, S, Steeber, DA, Jansen, PJ, Tedder, TF. CD19 expression levels regulate B lymphocyte development: human CD19 restores normal function in mice lacking endogenous CD19. Journal of Immunology . 1997; 158 (10): 4662-4669
    • Tedder, TF, Poe, JC, Fujimoto, M, Haas, KM, Sato, S. The CD19-CD21 signal transduction complex of B lymphocytes regulates the balance between health and autoimmune disease: systemic sclerosis as a model system. Current directions in autoimmunity . 2005; 8: 55-90
    • Shultz, LD, Rajan, TV, Greiner, DL. Severe defects in immunity and hematopoiesis caused by SHP-1 protein- tyrosine-phosphatase deficiency. Trends in Biotechnology . 1997; 15 (8): 302-307
    • Hibbs, ML, Tarlinton, DM, Armes, J. Multiple defects in the immune system of Lyn-deficient mice, culminating in autoimmune disease. Cell . 1995; 83 (2): 301-311
    • Bolland, S, Ravetch, JV. Spontaneous autoimmune disease in FcγRIIB-deficient mice results from strain-specific epistasis. Immunity . 2000; 13 (2): 277-285
    • Nimmerjahn, F, Ravetch, JV. Fcγ receptors as regulators of immune responses. Nature Reviews Immunology . 2008; 8 (1): 34-47
    • Boross, P, Arandhara, VL, Martin-Ramirez, J. The inhibiting Fc receptor for IgG, FcgammaRIIB, is a modifier of autoimmune susceptibility. The Journal of Immunology . 2011; 187: 1304-1313
    • Blank, MC, Stefanescu, RN, Masuda, E. Decreased transcription of the human FCGR2B gene mediated by the -343 G/C promoter polymorphism and association with systemic lupus erythematosus. Human Genetics . 2005; 117 (2-3): 220-227
    • Warmerdam, PAM, van de Winkel, JGJ, Vlug, A, Westerdaal, NAC, Capel, PJA. A single amino acid in the second Ig-like domain of the human Fcγ receptor II is critical for human IgG2 binding. Journal of Immunology . 1991; 147 (4): 1338-1343
    • Karassa, FB, Trikalinos, TA, Ioannidis, JPA. The FcγRIIIA-F158 allele is a risk factor for the development of lupus nephritis: a meta-analysis. Kidney International . 2003; 63 (4): 1475-1482
    • Vinuesa, CG, Tangye, SG, Moser, B, Mackay, CR. Follicular B helper T cells in antibody responses and autoimmunity. Nature Reviews Immunology . 2005; 5 (11): 853-865
    • Rochas, C, Hillion, S, Saraux, A. Transmembrane BAFF from rheumatoid synoviocytes requires interleukin-6 to induce the expression of recombination-activating gene in B lymphocytes. Arthritis and Rheumatism . 2009; 60 (5): 1261-1271
    • Pers, JO, Daridon, C, Devauchelle, V. BAFF overexpression is associated with autoantibody production in autoimmune diseases. Annals of the New York Academy of Sciences . 2005; 1050: 34-39
    • Youinou, P, Saraux, A, Pers, J-O. B-lymphocytes govern the pathogenesis of Sjögren's syndrome. Current Pharmaceutical Biotechnology . 2012; 13 (10): 2071-2077
    • Tobón, GJ, Pers, JO, Youinou, P, Saraux, A. B cell-targeted therapies in Sjögren’s syndrome. Autoimmunity Reviews . 2010; 9 (4): 224-228
    • Vincent, FB, Morand, EF, Mackay, F. BAFF and innate immunity: new therapeutic targets for systemic lupus erythematosus. Immunology and Cell Biology . 2012; 90 (3): 293-303
    • MacKay, F, Schneider, P. Cracking the BAFF code. Nature Reviews Immunology . 2009; 9 (7): 491-502
    • Hsu, H, Khare, SD, Lee, F. A novel modality of BAFF-specific inhibitor AMG623 peptibody reduces B-cell number and improves outcomes in murine models of autoimmune disease. Clinical and Experimental Rheumatology . 2012; 30 (2): 197-201
    • Jagessar, SA, Heijmans, N, Bauer, J. Antibodies against human BLyS and APRIL attenuate EAE development in marmoset monkeys. Journal of NeuroImmune Pharmacology . 2012; 7 (3): 557-570
    • Shlomchik, MJ, Madaio, MP, Ni, D, Trounstein, M, Huszar, D. The role of B cells in lpr/lpr-induced autoimmunity. Journal of Experimental Medicine . 1994; 180 (4): 1295-1306
    • Mohan, C, Datta, SK. Lupus: key pathogenic mechanisms and contributing factors. Clinical Immunology and Immunopathology . 1995; 77 (3): 209-220
    • Fauci, AS, Moutsopoulos, HM. Polyclonally triggered B cells in the peripheral blood and bone marrow of normal individuals and in patients with systemic lupus erythematosus and primary Sjogren’s syndrome. Arthritis and Rheumatism . 1981; 24 (4): 577-584
    • Lipsky, PE. Systemic lupus erythematosus: an autoimmune disease of B cell hyperactivity. Nature Immunology . 2001; 2 (9): 764-766
    • Klinman, DM, Shirai, A, Ishigatsubo, Y, Conover, J, Steinberg, AD. Quantitation of IgM- and IgG-secreting B cells in the peripheral blood of patients with systemic lupus erythematosus. Arthritis and Rheumatism . 1991; 34 (11): 1404-1410
    • Tsao, BP, Ohnishi, K, Cheroutre, H. Failed self-tolerance and autoimmunity in IgG anti-DNA transgenic mice. Journal of Immunology . 1992; 149 (1): 350-358
    • Vlahakos, DV, Foster, MH, Adams, S. Anti-DNA antibodies form immune deposits at distinct glomerular and vascular sites. Kidney International . 1992; 41 (6): 1690-1700
    • Hanrotel-Saliou, C, Segalen, I, le Meur, Y, Youinou, P, Renaudineau, Y. Glomerular antibodies in lupus nephritis. Clinical Reviews in Allergy and Immunology . 2011; 40 (3): 151-158
    • van Bavel, CC, Fenton, KA, Rekvig, OP, van der Vlag, J, Berden, JH. Glomerular targets of nephritogenic autoantibodies in systemic lupus erythematosus. Arthritis and Rheumatism . 2008; 58 (7): 1892-1899
    • D’Andrea, DM, Coupaye-Gerard, B, Kleyman, TR, Foster, MH, Madaio, MP. Lupus autoantibodies interact directly with distinct glomerular and vascular cell surface antigens. Kidney International . 1996; 49 (5): 1214-1221
    • Tincani, A, Biasini-Rebaioli, C, Cattaneo, R, Riboldi, P. Nonorgan specific autoantibodies and heart damage. Lupus . 2005; 14 (9): 656-659
    • Foster, MH, Cizman, B, Madaio, MP. Nephritogenic autoantibodies in systemic lupus erythematosus: immunochemical properties, mechanisms of immune deposition, and genetic origins. Laboratory Investigation . 1993; 69 (5): 494-507
    • Hahn, BH. Antibodies to DNA. New England Journal of Medicine . 1998; 338 (19): 1359-1368
    • Chan, OTM, Shlomchik, MJ. Cutting edge: B cells promote CD8+ T cell activation in MRL-Fas(lpr) mice independently of MHC class I antigen presentation. Journal of Immunology . 2000; 164 (4): 1658-1662
    • Blenman, KRM, Duan, B, Xu, Z. IL-10 regulation of lupus in the NZM2410 murine model. Laboratory Investigation . 2006; 86 (11): 1136-1148
    • Pathak, S, Mohan, C. Cellular and molecular pathogenesis of systemic lupus erythematosus: lessons from animal models. Arthritis Research and Therapy . 2011; 13 (5)
    • Capper, ER, Maskill, JK, Gordon, C, Blakemore, AIF. Interleukin (IL)-10, IL-1ra and IL-12 profiles in active and quiescent systemic lupus erythematosus: could longitudinal studies reveal patient subgroups of differing pathology?. Clinical and Experimental Immunology . 2004; 138 (2): 348-356
    • Tyrrell-Price, J, Lydyard, PM, Isenberg, DA. The effect of interleukin-10 and of interleukin-12 on the in vitro production of anti-double-stranded DNA antibodies from patients with systemic lupus erythematosus. Clinical and Experimental Immunology . 2001; 124 (1): 118-125
    • Kanda, N, Tsuchida, T, Tamaki, K. Estrogen enhancement of anti-double-stranded dna antibody and immunoglobulin g production in peripheral blood mononuclear cells from patients with systemic lupus erythematosus. Arthritis and Rheumatism . 1999; 42 (2): 328-337
    • Llorente, L, Richaud-Patin, Y, Garcia-Padilla, C. Clinical and biologic effects of anti-interleukin-10 monoclonal antibody administration in systemic Lupus erythematosus. Arthritis and Rheumatism . 2000; 43 (8): 1790-1800
    • Mok, CC, Lau, CS. Pathogenesis of systemic lupus erythematosus. Journal of Clinical Pathology . 2003; 56 (7): 481-490
    • Feldmann, M, Brennan, FM, Maini, RN. Rheumatoid arthritis. Cell . 1996; 85 (3): 307-310
    • Svensson, L, Jirholt, J, Holmdahl, R, Jansson, L. B cell-deficient mice do not develop type II collagen-induced arthritis (CIA). Clinical and Experimental Immunology . 1998; 111 (3): 521-526
    • Yanaba, K, Hamaguchi, Y, Venturi, GM, Steeber, DA, St Clair, EW, Tedder, TF. B cell depletion delays collagen-induced arthritis in mice: arthritis induction requires synergy between humoral and cell-mediated immunity. Journal of Immunology . 2007; 179 (2): 1369-1380
    • Luross, JA, Williams, NA. The genetic and immunopathological processes underlying collagen-induced arthritis. Immunology . 2001; 103 (4): 407-416
    • Fujii, K, Tsuji, M, Kitamura, A, Murota, K. The diagnostic significance of anti-Type II collagen antibody assay in rheumatoid arthritis. International Orthopaedics . 1992; 16 (3): 272-276
    • Cook, AD, Gray, R, Ramshaw, J, Mackay, IR, Rowley, MJ. Antibodies against the CB10 fragment of type II collagen in rheumatoid arthritis. Arthritis Research & Therapy . 2004; 6 (5): R477-483
    • Cook, AD, Rowley, MJ, Stockman, A, Muirden, KD, Mackay, IR. Specificity of antibodies to type II collagen in early rheumatoid arthritis. Journal of Rheumatology . 1994; 21 (7): 1186-1191
    • Holmdahl, R, Rubin, K, Klareskog, L. Characterization of the antibody response in mice with type II collagen-induced arthritis, using monoclonal anti-type II collagen antibodies. Arthritis and Rheumatism . 1986; 29 (3): 400-410
    • Holmdahl, R, Nordling, C, Larsson, P. Collagen induced arthritis: an experiment model for rheumatoid arthritis with involvement of both DTH and immune complex mediated mechanisms. Clinical and Experimental Rheumatology . 1989; 7 (3): S51-S55
    • Trentham, DE, Townes, AS, Kang, AH. Autoimmunity to type II collagen: an experimental model of arthritis. Journal of Experimental Medicine . 1977; 146 (3): 857-868
    • Courtenay, JS, Dallman, MJ, Dayan, AD. Immunisation against heterologous type II collagen induces arthritis in mice. Nature . 1980; 283 (5748): 666-668
    • Stuart, JM, Cremer, MA, Townes, AS, Kang, AH. Type II collagen-induced arthritis in rats. Passive transfer with serum and evidence that IgG anticollagen antibodies can cause arthritis. Journal of Experimental Medicine . 1982; 155 (1): 1-16
    • Wooley, PH, Luthra, HS, Singh, SK. Passive transfer of arthritis to mice by injection of human anti-type II collagen antibody. Mayo Clinic Proceedings . 1984; 59 (11): 737-743
    • Nandakumar, KS, Andrén, M, Martinsson, P. Induction of arthritis by single monoclonal IgG anti-collagen type II antibodies and enhancement of arthritis in mice lacking inhibitory FcγRIIB. European Journal of Immunology . 2003; 33 (8): 2269-2277
    • Firestein, GS. Evolving concepts of rheumatoid arthritis. Nature . 2003; 423 (6937): 356-361
    • Nandakumar, KS, Bajtner, E, Hill, L. Arthritogenic antibodies specific for a major type II collagen triple-helical epitope bind and destabilize cartilage independent of inflammation. Arthritis and Rheumatism . 2008; 58 (1): 184-196
    • Amirahmadi, SF, Minh, HP, Gray, RE. An arthritogenic monoclonal antibody to type II collagen, CII-C1, impairs cartilage formation by cultured chondrocytes. Immunology and Cell Biology . 2004; 82 (4): 427-434
    • Gray, RE, Seng, N, Mackay, IR, Rowley, MJ. Measurement of antibodies to collagen II by inhibition of collagen fibril formation in vitro. Journal of Immunological Methods . 2004; 285 (1): 55-61
    • Crombie, DE, Turer, M, Zuasti, BB. Destructive effects of murine arthritogenic antibodies to type II collagen on cartilage explants in vitro. Arthritis Research & Therapy . 2005; 7 (5): R927-937
    • Amirahmadi, SF, Whittingham, S, Crombie, DE. Arthritogenic anti-type II collagen antibodies are pathogenic for cartilage-derived chondrocytes independent of inflammatory cells. Arthritis and Rheumatism . 2005; 52 (6): 1897-1906
    • Rowley, MJ, Nandakumar, KS, Holmdahl, R. The role of collagen antibodies in mediating arthritis. Modern Rheumatology . 2008; 18 (5): 429-441
    • Nandakumar, KS. Pathogenic antibody recognition of cartilage. Cell and Tissue Research . 2010; 339 (1): 213-220
    • Signore, A, Pozzilli, P, Gale, EAM, Andreani, D, Beverley, PCL. The natural history of lymphocyte subsets infiltrating the pancreas of NOD mice. Diabetologia . 1989; 32 (5): 282-289
    • Willcox, A, Richardson, SJ, Bone, AJ, Foulis, AK, Morgan, NG. Analysis of islet inflammation in human type 1 diabetes. Clinical and Experimental Immunology . 2009; 155 (2): 173-181
    • Haskins, K. Pathogenic T-cell clones in autoimmune diabetes: more lessons from the NOD mouse. Advances in Immunology . 2005; 87: 123-162
    • Wong, FS, Wen, L. B cells in autoimmune diabetes. The Review of Diabetic Studies . 2005; 2: 121-135
    • O’Neill, SK, Liu, E, Cambier, JC. Change you can B(cell)eive in: recent progress confirms a critical role for B cells in type 1 diabetes. Current Opinion in Endocrinology, Diabetes and Obesity . 2009; 16 (4): 293-298
    • Bingley, PJ. Clinical applications of diabetes antibody testing. Journal of Clinical Endocrinology and Metabolism . 2010; 95 (1): 25-33
    • Palmer, JP, Asplin, CM, Clemons, P. Insulin antibodies in insulin-dependent diabetics before insulin treatment. Science . 1983; 222 (4630): 1337-1339
    • Baekkeskov, S, Aanstoot, H-J, Christgau, S. Identification of the 64K autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutatmic acid decarboxylase. Nature . 1990; 347 (6289): 151-156
    • Payton, MA, Hawkes, CJ, Christie, MR. Relationship of the 37,000- and 40,000-M(r) tryptic fragments of islet antigens in insulin-dependent diabetes to the protein tyrosine phosphatase- like molecule IA-2 (ICA512). Journal of Clinical Investigation . 1995; 96 (3): 1506-1511
    • Wenzlau, JM, Juhl, K, Yu, L. The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes. Proceedings of the National Academy of Sciences of the United States of America . 2007; 104 (43): 17040-17045
    • Serreze, DV, Fleming, SA, Chapman, HD, Richard, SD, Leiter, EH, Tisch, RM. B lymphocytes are critical antigen-presenting cells for the initiation of T cell-mediated autoimmune diabetes in nonobese diabetic mice. Journal of Immunology . 1998; 161 (8): 3912-3918
    • Reijonen, H, Daniels, TL, Lernmark, A, Nepom, GT. GAD65-specific autoantibodies enhance the presentation of an immunodominant T-cell epitope from GAD65. Diabetes . 2000; 49 (10): 1621-1626
    • Falcone, M, Lee, J, Patstone, G, Yeung, B, Sarvetnick, N. B lymphocytes are crucial antigen-presenting cells in the pathogenic autoimmune response to GAD65 antigen in nonobese diabetic mice. Journal of Immunology . 1998; 161 (3): 1163-1168
    • Noorchashm, H, Noorchashm, N, Kern, J, Rostami, SY, Barker, CF, Naji, A. B-cells are required for the initiation of insulitis and sialitis in nonobese diabetic mice. Diabetes . 1997; 46 (6): 941-946
    • Serreze, DV, Chapman, HD, Varnum, DS. B lymphocytes are essential for the initiation of T cell-mediated autoimmune diabetes: analysis of a new “speed congenic” stock of NOD.Igμ(null) mice. Journal of Experimental Medicine . 1996; 184 (5): 2049-2053
    • Hu, CY, Rodriguez-Pinto, D, Du, W. Treatment with CD20-specific antibody prevents and reverses autoimmune diabetes in mice. Journal of Clinical Investigation . 2007; 117 (12): 3857-3867
    • Fiorina, P, Vergani, A, Dada, S. Targeting CD22 reprograms b-cells and reverses autoimmune diabetes. Diabetes . 2008; 57 (11): 3013-3024
    • Zekavat, G, Rostami, SY, Badkerhanian, A. In vivo BLyS/BAFF neutralization ameliorates islet-directed autoimmunity in nonobese diabetic mice. Journal of Immunology . 2008; 181 (11): 8133-8144
    • Xiu, Y, Wong, CP, Bouaziz, JD. B lymphocyte depletion by CD20 monoclonal antibody prevents diabetes in nonobese diabetic mice despite isotype-specific differences in FcγR effector functions. Journal of Immunology . 2008; 180 (5): 2863-2875
    • Mariño, E, Villanueva, J, Walters, S, Liuwantara, D, Mackay, F, Grey, ST. CD4+CD25+ T-cells control autoimmunity in the absence of B-cells. Diabetes . 2009; 58 (7): 1568-1577
    • Brodie, GM, Wallberg, M, Santamaria, P, Wong, FS, Green, EA. B-cells promote intra-islet CD8+ cytotoxic T-cell survival to enhance type 1 diabetes. Diabetes . 2008; 57 (4): 909-917
    • Noorchashm, H, Lieu, YK, Noorchashm, N. I-A(g7)-mediated antigen presentation by B lymphocytes is critical in overcoming a checkpoint in T cell tolerance to islet β cells of nonobese diabetic mice. Journal of Immunology . 1999; 163 (2): 743-750
    • Martin, S, Wolf-Eichbaum, D, Duinkerken, G. Development of type 1 diabetes despite severe hereditary B-cell deficiency. New England Journal of Medicine . 2001; 345 (14): 1036-1040
    • Silveira, PA, Johnson, E, Chapman, HD, Bui, T, Tisch, RM, Serreze, DV. The preferential ability of B lymphocytes to act as diabetogenic APC in NOD mice depends on expression of self-antigen-specific immunoglobulin receptors. European Journal of Immunology . 2002; 32 (12): 3657-3666
    • Kim, J, Richter, W, Aanstoot, HJ. Differential expression of GAD65 and GAD67 in human, rat, and mouse pancreatic islets. Diabetes . 1993; 42 (12): 1799-1808
    • Öling, V, Reijonen, H, Simell, O, Knip, M, Ilonen, J. Autoantigen-specific memory CD4+ T cells are prevalent early in progression to Type 1 diabetes. Cellular Immunology . 2012; 273 (2): 133-139
    • Monti, P, Scirpoli, M, Rigamonti, A. Evidence for in vivo primed and expanded autoreactive T cells as a specific feature of patients with type 1 diabetes. Journal of Immunology . 2007; 179 (9): 5785-5792
    • Quinn, A, Sercarz, EE. T cells with multiple fine specificities are used by non-obese diabetic (NOB) mice in the response to GAD(524-543). Journal of Autoimmunity . 1996; 9 (3): 365-370
    • Kaufman, DL, Clare-Salzler, M, Tian, J. Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes. Nature . 1993; 366 (6450): 69-72
    • Tisch, R, Yang, XD, Singer, SM, Liblau, RS, Fugger, L, McDevitt, HO. Immune response to glutamic acid decarboxylase correlates with insulitis in non-obese diabetic mice. Nature . 1993; 366 (6450): 72-75
    • Zekzer, D, Wong, FS, Ayalon, O. GAD-reactive CD4+ Th1 cells induce diabetes in NOD/SCID mice. Journal of Clinical Investigation . 1998; 101 (1): 68-73
    • Jaume, JC, Parry, SL, Madec, AM, Sønderstrup, G, Baekkeskov, S. Suppressive effect of glutamic acid decarboxylase 65-specific autoimmune B lymphocytes on processing of T cell determinants located within the antibody epitope. Journal of Immunology . 2002; 169 (2): 665-672
    • Banga, JP, Moore, JK, Duhindan, N. Modulation of antigen presentation by autoreactive B cell clones specific for GAD65 from a type I diabetic patient. Clinical and Experimental Immunology . 2004; 135 (1): 74-84
    • Pescovitz, MD, Greenbaum, CJ, Krause-Steinrauf, H. Rituximab, B-lymphocyte depletion, and preservation of beta-cell function. New England Journal of Medicine . 2009; 361 (22): 2143-2152
    • Gross, JA, Johnston, J, Mudri, S. TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease. Nature . 2000; 404 (6781): 995-999
    • Dörner, T, Burmester, GR. New approaches of B-cell-directed therapy: beyond rituximab. Current Opinion in Rheumatology . 2008; 20 (3): 263-268
    • Looney, RJ, Anolik, J, Sanz, I. B cells as therapeutic targets for rheumatic diseases. Current Opinion in Rheumatology . 2004; 16 (3): 180-185
    • Browning, JL. B cells move to centre stage: novel opportunities for autoimmune disease treatment. Nature Reviews Drug Discovery . 2006; 5 (7): 564-576
    • Li, Y, Chen, F, Putt, M. B cell depletion with anti-CD79 mAbs ameliorates autoimmune disease in MRL/lpr mice. Journal of Immunology . 2008; 181 (5): 2961-2972
    • Gatumu, MK, Skarstein, K, Papandile, A, Browning, JL, Fava, RA, Bolstad, AI. Blockade of lymphotoxin-beta receptor signaling reduces aspects of Sjögren syndrome in salivary glands of non-obese diabetic mice. Arthritis Research and Therapy . 2009; 11 (1, article R24)
    • Glennie, MJ, French, RR, Cragg, MS, Taylor, RP. Mechanisms of killing by anti-CD20 monoclonal antibodies. Molecular Immunology . 2007; 44 (16): 3823-3837
    • Golay, J, Zaffaroni, L, Vaccari, T. Biologic response of B lymphoma cells to anti-CD20 monoclonal antibody rituximab in vitro: CD55 and CD59 regulate complement-mediated cell lysis. Blood . 2000; 95 (12): 3900-3908
    • Cragg, MS, Glennie, MJ. Antibody specificity controls in vivo effector mechanisms of anti-CD20 reagents. Blood . 2004; 103 (7): 2738-2743
    • Chan, HTC, Hughes, D, French, RR. CD20-induced lymphoma cell death is independent of both caspases and its redistribution into triton X-100 insoluble membrane rafts. Cancer Research . 2003; 63 (17): 5480-5489
    • Cragg, MS, Walshe, CA, Ivanov, AO, Glennie, MJ. The biology of CD20 and its potential as a target for mAb therapy. Current Directions in Autoimmunity . 2005; 8: 140-174
    • Townsend, MJ, Monroe, JG, Chan, AC. B-cell targeted therapies in human autoimmune diseases: an updated perspective. Immunological Reviews . 2010; 237 (1): 264-283
    • Tony, HP, Burmester, G, Schulze-Koops, H. Safety and clinical outcomes of rituximab therapy in patients with different autoimmune diseases: experience from a national registry (GRAID). Arthritis Research and Therapy . 2011; 13 (3, article R75)
    • Hauser, SL, Waubant, E, Arnold, DL. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. New England Journal of Medicine . 2008; 358 (7): 676-688
    • Leandro, MJ, Cooper, N, Cambridge, G, Ehrenstein, MR, Edwards, JCW. Bone marrow B-lineage cells in patients with rheumatoid arthritis following rituximab therapy. Rheumatology . 2007; 46 (1): 29-36
    • Cambridge, G, Leandro, MJ, Teodorescu, M. B cell depletion therapy in systemic lupus erythematosus: effect on autoantibody and antimicrobial antibody profiles. Arthritis and Rheumatism . 2006; 54 (11): 3612-3622
    • Pescovitz, MD, Torgerson, TR, Ochs, HD. Effect of rituximab on human in vivo antibody immune responses. Journal of Allergy and Clinical Immunology . 2011; 128 (6): 1295.e5-1302.e5
    • van der Kolk, LE, Baars, JW, Prins, MH, van Oers, MHJ. Rituximab treatment results in impaired secondary humoral immune responsiveness. Blood . 2002; 100 (6): 2257-2259
    • Gonzalez-Stawinski, GV, Yu, PB, Love, SD, Parker, W, Davis, RD. Hapten-induced primary and memory humoral responses are inhibited by the infusion of anti-CD20 monoclonal antibody (IDEC-C2B8, Rituximab). Clinical Immunology . 2001; 98 (2): 175-179
    • Huang, H, Benoist, C, Mathis, D. Rituximab specifically depletes short-lived autoreactive plasma cells in a mouse model of inflammatory arthritis. Proceedings of the National Academy of Sciences of the United States of America . 2010; 107 (10): 4658-4663
    • Anderson, KC, Bates, MP, Slaughenhoupt, BL. Expression of human B cell-associated antigens on leukemias and lymphomas: a model of human B cell differentiation. Blood . 1984; 63 (6): 1424-1433
    • Popa, C, Leandro, MJ, Cambridge, G, Edwards, JCW. Repeated B lymphocyte depletion with rituximab in rheumatoid arthritis over 7  yrs. Rheumatology . 2007; 46 (4): 626-630
    • Jones, RB, Ferraro, AJ, Chaudhry, AN. A multicenter survey of rituximab therapy for refractory antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis and Rheumatism . 2009; 60 (7): 2156-2168
    • van Vollenhoven, RF, Emery, P, Bingham, CO. Longterm safety of patients receiving rituximab in rheumatoid arthritis clinical trials. Journal of Rheumatology . 2010; 37 (3): 558-567
    • de la Torre, I, Leandro, MJ, Edwards, JCW, Cambridge, G. Baseline serum immunoglobulin levels in patients with rheumatoid arthritis: relationships with clinical parameters and with B-cell dynamics following rituximab. Clinical and Experimental Rheumatology . 2012; 30 (4): 554-560
    • Eming, R, Nagel, A, Wolff-Franke, S, Podstawa, E, Debus, D, Hertl, M. Rituximab exerts a dual effect in pemphigus vulgaris. Journal of Investigative Dermatology . 2008; 128 (12): 2850-2858
    • Stasi, R, Del Poeta, G, Stipa, E. Response to B-cell-depleting therapy with rituximab reverts the abnormalities of T-cell subsets in patients with idiopathic thrombocytopenic purpura. Blood . 2007; 110 (8): 2924-2930
    • Hamaguchi, Y, Uchida, J, Cain, DW. The peritoneal cavity provides a protective niche for B1 and conventional B lymphocytes during anti-CD20 immunotherapy in mice. Journal of Immunology . 2005; 174 (7): 4389-4399
    • Müller, C, Murawski, N, Wiesen, MHJ. The role of sex and weight on rituximab clearance and serum elimination half-life in elderly patients with DLBCL. Blood . 2012; 119 (14): 3276-3284
    • Hollander, N. Immunotherapy for B-cell lymphoma: current status and prospective advances.
    • Ramos-Casals, M, Soto, MJ, Cuadrado, MJ, Khamashta, MA. Rituximab in systemic lupus erythematosus A systematic review of off-label use in 188 cases. Lupus . 2009; 18 (9): 767-776
    • Diaz-Lagares, C, Perez-Alverez, R, Garcia-Hernandez, FJ. Rates of and risk factors for severe infections in patients with systemic autoimmune diseases receiving biological agents off-label. Arthritis Research & Therapy . 2011; 13, article R112
    • Zocher, M, Baeuerle, PA, Dreier, T, Iglesias, A. Specific depletion of autoreactive B lymphocytes by a recombinant fusion protein in vitro in vivo. International Immunology . 2003; 15 (7): 789-796
    • Tchorbanov, AI, Voynova, EN, Mihaylova, NM. Selective silencing of DNA-specific B lymphocytes delays lupus activity in MRL/lpr mice. European Journal of Immunology . 2007; 37 (12): 3587-3596
    • Mihaylova, N, Voynova, E, Tchorbanov, A. Selective silencing of disease-associated B-lymphocytes by chimeric molecules targeting their FcγIIb receptor. International Immunology . 2008; 20 (2): 165-175
    • Dimitrova, I, Gesheva, V, Nikolova, K. Target silencing of disease-associated B-lymphocytes by chimeric molecules in SCID model of pristane-induced autoimmunity. Lupus . 2010; 19 (11): 1261-1271
    • Józsi, M, Prechl, J, Bajtay, Z, Erdei, A. Complement receptor type 1 (CD35) mediates inhibitory signals in human B lymphocytes. Journal of Immunology . 2002; 168 (6): 2782-2788
    • Iking-Konert, C, Stocks, S, Weinsberg, F. First clinical trials of a new heteropolymer technology agent in normal healthy volunteers and patients with systemic lupus erythematosus: safety and proof of principle of the antigen-heteropolymer ETI-104. Annals of the Rheumatic Diseases . 2004; 63 (9): 1104-1112
    • Blank, M, Manosroi, J, Tomer, Y. Suppression of experimental systemic lupus erythematosus (SLE) with specific anti-idiotypic antibody-saporin conjugate. Clinical and Experimental Immunology . 1994; 98 (3): 434-441
    • Wang, X, Zhang, A, Liu, Y. Anti-idiotypic antibody specific to GAD65 autoantibody prevents type 1 diabetes in the NOD mouse. PLoS One . 2012; 7 (2)
    • Bollmann, FM. Rheumatic autoimmune diseases: proposed elimination of autoreactive B-cells with magnetic nanoparticle-linked antigens. Medical Hypotheses . 2012; 78 (4): 479-481
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
  • No similar publications.

Share - Bookmark

Funded by projects


Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok