OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Franklin, Michael J.; Brusilow, William S.A.; Woodbury, Dixon J. (2004)
Publisher: Elsevier BV
Journal: Biophysical Journal
Languages: English
Types: Article
Subjects: Bioenergetics, Biophysics
We have developed a mathematical model in concert with an assay that allows us to calculate proton (H+) flux and conductance through a single Fo of the F1Fo ATP synthase. Lipid vesicles reconstituted with just a few functional Fo from Escherichia coli were loaded with 250 mM K+ and suspended in a low K+ solution. The pH of the weakly buffered external solution was recorded during sequential treatment with the potassium ionophore valinomycin, the protonophore carbonyl cyanide 3-chlorophenylhydrazone, and HCl. From these pH traces and separate determinations of vesicle size and lipid concentration we calculate the proton conductance through a single Fo sector. This methodology is sensitive enough to detect small (15%) conductance changes. We find that wild-type Fo has a proton flux of 3100 ± 500 H+/s/Fo at a transmembrane potential of 106 mV (25°C and pH 6.8). This corresponds to a proton conductance of 4.4 fS.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok