LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Navet, Nicolas; Fejoz, Loïc; Havet, Lionel; Altmeyer, Sebastian (2015)
Publisher: University of Luxembourg
Languages: English
Types: Conference object
Subjects: : Computer science [C05] [Engineering, computing & technology], model interpretation, simulation, real-time systems, embedded systems, Model-based design, programming language, design space exploration, timing predictability, : Sciences informatiques [C05] [Ingénierie, informatique & technologie], [ INFO.INFO-ES ] Computer Science [cs]/Embedded Systems
International audience; We introduce a novel Model-Driven Development (MDD) flow which aims at more simplicity, more intuitive programming, quicker turnaround time and real-time predictability by leveraging the use of model-interpretation and providing the language abstractions needed to argue about the timing correctness on a high-level. The MDD flow is built around a language called Cyber-Physical Action Language (CPAL). CPAL serves to describe both the functional behaviour of activities (i.e., the code of the function itself) as well as the functional architecture of the system (i.e., the set of functions, how they are activated, and the data flows among the functions). CPAL is meant to support two use-cases. Firstly, CPAL is a development and design space exploration environment for CPS with main features being the formal description, the editing, graphical representation and simulation of CPS models. Secondly, CPAL is a real-time execution platform. The vision behind CPAL is that a model is executed and verified in simulation mode on a workstation and the same model can be later run on an embedded board with a timing-equivalent run-time time behaviour.