LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Wlasak, M. A.; Cullen, M. J. P. (2014)
Publisher: Copernicus Publications
Languages: English
Types: 0038
Subjects: Meteorology. Climatology, QC851-999, Q, Science, Physics, QC1-999

Classified by OpenAIRE into

arxiv: Physics::Atmospheric and Oceanic Physics
A major difference in the formulation of the univariate part of static background error covariance models for use in global operational 4DVAR arises from the order in which the horizontal and vertical transforms are applied. This is because the atmosphere is non-separable with large horizontal scales generally tied to large vertical scales and small horizontal scales tied to small vertical scales. Also horizontal length scales increase dramatically as one enters the stratosphere. A study is presented which evaluates the strengths and weaknesses of each approach with the Met Office Unified Model.

It is shown that if the vertical transform is applied as a function of horizontal wavenumber then the horizontal globally-averaged variance and the homogenous, isotropic length scale on each model level for each control variable of the training data is preserved by the covariance model. In addition the wind variance and associated length scales are preserved as the scheme preserves the variances and length scales of horizontal derivatives. If the vertical transform is applied in physical space, it is possible to make it a function of latitude at the cost of not preserving the variances and length scales of the horizontal derivatives.

Summer and winter global 4DVAR trials have been run with both background error covariance models. A clear benefit is seen in the fit to observations when the vertical transform is in spectral space and is a function of total horizontal wavenumber.

Share - Bookmark

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok