LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Kajiya, Mikihito; Giro, Gabriela; Taubman, Martin A.; Han, Xiaozhe; Mayer, Marcia P.A.; Kawai, Toshihisa (2010)
Publisher: CoAction Publishing
Journal: Journal of Oral Microbiology
Languages: English
Types: Article
Subjects: Review Article, RC109-216, RANKL, bone resorption, Infectious and parasitic diseases, Microbiology, QR1-502, osteoimmunology, periodontal pathogenic bacteria

Classified by OpenAIRE into

mesheuropmc: musculoskeletal diseases
Accumulated lines of evidence suggest that hyperimmune responses to periodontal bacteria result in the destruction of periodontal connective tissue and alveolar bone. The etiological roles of periodontal bacteria in the onset and progression of periodontal disease (PD) are well documented. However, the mechanism underlying the engagement of periodontal bacteria in RANKL-mediated alveolar bone resorption remains unclear. Therefore, this review article addresses three critical subjects. First, we discuss earlier studies of immune intervention, ultimately leading to the identification of bacteria-reactive lymphocytes as the cellular source of osteoclast-induction factor lymphokine (now called RANKL) in the context of periodontal bone resorption. Next, we consider (1) the effects of periodontal bacteria on RANKL production from a variety of adaptive immune effector cells, as well as fibroblasts, in inflamed periodontal tissue and (2) the bifunctional roles (upregulation vs. downregulation) of LPS produced from periodontal bacteria in a RANKL-induced osteoclast-signal pathway. Future studies in these two areas could lead to new therapeutic approaches for the management of PD by down-modulating RANKL production and/or RANKL-mediated osteoclastogenesis in the context of host immune responses against periodontal pathogenic bacteria. Keywords: periodontal pathogenic bacteria; RANKL; bone resorption; osteoimmunology(Published: 8 November 2010)Citation: Journal of Oral Microbiology 2010, 2: 5532 - DOI: 10.3402/jom.v2i0.5532
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Akira S. Toll-like receptor signaling. J Biol Chem 2003; 278: 38105 8.
    • 2. Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2001; 2: 675 80.
    • 3. Alderson MR, Armitage RJ, Tough TW, Strockbine L, Fanslow WC, Spriggs MK. CD40 expression by human monocytes: regulation by cytokines and activation of monocytes by the ligand for CD40. J Exp Med 1993; 178: 669 74.
    • 4. Amcheslavsky A, Bar-Shavit Z. Toll-like receptor 9 ligand blocks osteoclast differentiation through induction of phosphatase. J Bone Miner Res 2007; 22: 1301 10.
    • 5. Amcheslavsky A, Hemmi H, Akira S, Bar-Shavit Z. Differential contribution of osteoclast- and osteoblast-lineage cells to CpG-oligodeoxynucleotide (CpG-ODN) modulation of osteoclastogenesis. J Bone Miner Res 2005; 20: 1692 9.
    • 6. Anderson CC, Sinclair NR. FcR-mediated inhibition of cell activation and other forms of coinhibition. Crit Rev Immunol 1998; 18: 525 44.
    • 7. Aruffo A, Farrington M, Hollenbaugh D, Li X, Milatovich A, Nonoyama S, et al. The CD40 ligand, gp39, is defective in activated T cells from patients with X-linked hyper-IgM syndrome. Cell 1993; 72: 291 300.
    • 8. Baer PN, Newton WL. Studies on peridontal disease in the mouse. 3. The germ-free mouse and its conventional control. Oral Surg Oral Med Oral Pathol 1960; 13: 1134 44.
    • 9. Bainbridge BW, Darveau RP. Porphyromonas gingivalis lipopolysaccharide: an unusual pattern recognition receptor ligand for the innate host defense system. Acta Odontol Scand 2001; 59: 131 8.
    • 10. Belibasakis GN, Bostanci N, Hashim A, Johansson A, AduseOpoku J, Curtis MA, et al. Regulation of RANKL and OPG gene expression in human gingival fibroblasts and periodontal ligament cells by Porphyromonas gingivalis: a putative role of the Arg-gingipains. Microb Pathog 2007; 43: 46 53.
    • 11. Belibasakis GN, Johansson A, Wang Y, Chen C, Kalfas S, Lerner UH. The cytolethal distending toxin induces receptor activator of NF-kappaB ligand expression in human gingival fibroblasts and periodontal ligament cells. Infect Immun 2005; 73: 342 51.
    • 12. Black CA. Delayed type hypersensitivity: current theories with an historic perspective. Dermatol Online J 1999; 5: 7.
    • 13. Bostanci N, Ilgenli T, Emingil G, Afacan B, Han B, Toz H et al. Gingival crevicular fluid levels of RANKL and OPG in periodontal diseases: implications of their relative ratio. J Clin Periodontol 2007; 34: 370 6.
    • 14. Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature 2003; 423: 337 42.
    • 15. Chen HA, Johnson BD, Sims TJ, Darveau RP, Moncla BJ, Whitney CW, et al. Humoral immune responses to Porphyromonas gingivalis before and following therapy in rapidly progressive periodontitis patients. J Periodontol 1991; 62: 781 91.
    • 16. Choi Y, Woo KM, Ko SH, Lee YJ, Park SJ, Kim HM, et al. Osteoclastogenesis is enhanced by activated B cells but suppressed by activated CD8( ) T cells. Eur J Immunol 2001; 31: 2179 88.
    • 17. Chung YH, Chang EJ, Kim SJ, Kim HH, Kim HM, Lee SB, et al. Lipopolysaccharide from Prevotella nigrescens stimulates osteoclastogenesis in cocultures of bone marrow mononuclear cells and primary osteoblasts. J Periodontal Res 2006; 41: 288 96.
    • 18. Cochran DL. Inflammation and bone loss in periodontal disease. J Periodontol 2008; 79: 1569 76.
    • 19. Cortelli JR, Aquino DR, Cortelli SC, Fernandes CB, de Carvalho-Filho J, Franco GC, et al. Etiological analysis of initial colonization of periodontal pathogens in oral cavity. J Clin Microbiol 2008; 46: 1332 29.
    • 20. Dougall WC, Glaccum M, Charrier K, Rohrbach K, Brasel K, De Smedt T, et al. RANK is essential for osteoclast and lymph node development. Genes Dev 1999; 13: 2412 24.
    • 21. Ebersole JL. Systemic humoral immune responses in periodontal disease. Crit Rev Oral Biol Med 1990; 1: 283 331.
    • 22. Ebersole JL, Taubman MA. The protective nature of host responses in periodontal diseases. Periodontol 2000 1994; 5: 112 41.
    • 23. Ebersole JL, Taubman MA, Smith DJ, Genco RJ, Frey DE. Human immune responses to oral micro-organisms. I. Association of localized juvenile periodontitis (LJP) with serum antibody responses to Actinobacillus actinomycetemcomitans. Clin Exp Immunol 1982; 47: 43 52.
    • 24. Ernst CW, Lee JE, Nakanishi T, Karimbux NY, Rezende TM, Stashenko P, et al. Diminished forkhead box P3/CD25 doublepositive T regulatory cells are associated with the increased nuclear factor-kappaB ligand (RANKL ) T cells in bone resorption lesion of periodontal disease. Clin Exp Immunol 2007; 148: 271 80.
    • 25. Garlet GP, Cardoso CR, Silva TA, Ferreira BR, Avila-Campos MJ, Cunha FQ, et al. Cytokine pattern determines the progression of experimental periodontal disease induced by Actinobacillus actinomycetemcomitans through the modulation of MMPs, RANKL, and their physiological inhibitors. Oral Microbiol Immunol 2006; 21: 12 20.
    • 26. Genco RJ, Mashimo PA, Krygier G, Ellison SA. Antibodymediated effects on the periodontium. J Periodontol 1974; 45: 330 7.
    • 27. Guggenheim B, Schroeder HE. Reactions in the periodontium to continuous antigenic stimulation in sensitized gnotobiotic rats. Infect Immun 1974; 10: 565 77.
    • 28. Graves DT, Jiang Y, Valente AJ. The expression of monocyte chemoattractant protein-1 and other chemokines by osteoblasts. Front Biosci 1999; 4: D571 80.
    • 29. Graves DT, Oskoui M, Volejnikova S, Naguib G, Cai S, Desta T, et al. Tumor necrosis factor modulates fibroblast apoptosis, PMN recruitment, and osteoclast formation in response to P. gingivalis infection. J Dent Res 2001; 80: 1875 9.
    • 30. Haffajee AD, Cugini MA, Tanner A, Pollack RP, Smith C, Kent RL Jr, et al. Subgingival microbiota in healthy, wellmaintained elder and periodontitis subjects. J Clin Periodontol 1998; 25: 346 53.
    • 31. Han X, Kawai T, Eastcott JW, Taubman MA. Bacterialresponsive B lymphocytes induce periodontal bone resorption. J Immunol 2006; 176: 625 31.
    • 32. Han X, Kawai T, Taubman MA. Interference with immunecell-mediated bone resorption in periodontal disease. Periodontol 2000 2007; 45: 76 94.
    • 33. Harada Y, Han X, Yamashita K, Kawai T, Eastcott JW, Smith DJ, et al. Effect of adoptive transfer of antigen-specific B cells on periodontal bone resorption. J Periodontal Res 2006; 41: 101 7.
    • 34. Hayashi S, Tsuneto M, Yamada T, Nose M, Yoshino M, Shultz LD, et al. Lipopolysaccharide-induced osteoclastogenesis in Src homology 2-domain phosphatase-1-deficient viable motheaten mice. Endocrinology 2004; 145: 2721 9.
    • 35. Hayashi S, Yamada T, Tsuneto M, Yamane T, Takahashi M, Shultz LD, et al. Distinct osteoclast precursors in the bone marrow and extramedullary organs characterized by responsiveness to Toll-like receptor ligands and TNF-alpha. J Immunol 2003; 171: 5130 9.
    • 36. Henderson B, Nair SP. Hard labour: bacterial infection of the skeleton. Trends Microbiol 2003; 11: 570 7.
    • 37. Hofbauer LC, Gori F, Riggs BL, Lacey DL, Dunstan CR, Spelsberg TC, et al. Stimulation of osteoprotegerin ligand and inhibition of osteoprotegerin production by glucocorticoids in human osteoblastic lineage cells: potential paracrine mechanisms of glucocorticoid-induced osteoporosis. Endocrinology 1999; 140: 4382 9.
    • 38. Hormdee D, Nagasawa T, Kiji M, Yashiro R, Kobayashi H, Koshy G, et al. Protein kinase-A-dependent osteoprotegerin production on interleukin-1 stimulation in human gingival fibroblasts is distinct from periodontal ligament fibroblasts. Clin Exp Immunol 2005; 142: 490 7.
    • 39. Liu D, Xu JK, Figliomeni L, Huang L, Pavlos NJ, Rogers M, et al. Expression of RANKL and OPG mRNA in periodontal disease: possible involvement in bone destruction. Int J Mol Med 2003; 11: 17 21.
    • 40. Hyman HM, Zeldow BJ. A comparison of the cutaneous and mucosal arthus reaction in the guinea pig and hamster. J Immunol 1963; 91: 701 8.
    • 41. Islam S, Hassan F, Tumurkhuu G, Ito H, Koide N, Mori I, et al. 5-Fluorouracil prevents lipopolysaccharide-induced nitric oxide production in RAW 264.7 macrophage cells by inhibiting Akt-dependent nuclear factor-kappaB activation. Cancer Chemother Pharmacol 2007; 59: 227 33.
    • 42. Janeway CA Jr, Medzhitov R. Innate immune recognition. Annu Rev Immunol 2002; 20: 197 216.
    • 43. Jiang Y, Mehta CK, Hsu TY, Alsulaimani FF. Bacteria induce osteoclastogenesis via an osteoblast-independent pathway. Infect Immun 2002; 70: 3143 8.
    • 44. Josien R, Wong BR, Li HL, Steinman RM, Choi Y. TRANCE, a TNF family member, is differentially expressed on T cell subsets and induces cytokine production in dendritic cells. J Immunol 1999; 162: 2562 8.
    • 45. Kanzaki H, Chiba M, Shimizu Y, Mitani H. Dual regulation of osteoclast differentiation by periodontal ligament cells through RANKL stimulation and OPG inhibition. J Dent Res 2001; 80: 887 91.
    • 46. Katz J, Yang QB, Zhang P, Potempa J, Travis J, Michalek SM, et al. Hydrolysis of epithelial junctional proteins by Porphyromonas gingivalis gingipains. Infect Immun 2002; 70: 2512 8.
    • 47. Kawai T, Eisen-Lev R, Seki M, Eastcott JW, Wilson ME, Taubman MA. Requirement of B7 costimulation for Th1- mediated inflammatory bone resorption in experimental periodontal disease. J Immunol 2000; 164: 2102 9.
    • 48. Kawai T, Matsuyama T, Hosokawa Y, Makihira S, Seki M, Karimbux NY, et al. B and T lymphocytes are the primary sources of RANKL in the bone resorptive lesion of periodontal disease. Am J Pathol 2006; 169: 987 98.
    • 49. Kawai T, Shimauchi H, Eastcott JW, Smith DJ, Taubman MA. Antigen direction of specific T-cell clones into gingival tissues. Immunology 1998; 93: 11 9.
    • 50. Khoa ND, Montesinos MC, Reiss AB, Delano D, Awadallah N, Cronstein BN. Inflammatory cytokines regulate function and expression of adenosine A(2A) receptors in human monocytic THP-1 cells. J Immunol 2001; 167: 4026 32.
    • 51. Klaschik S, Tross D, Klinman DM. Inductive and suppressive networks regulate TLR9-dependent gene expression in vivo. J Leukoc Biol 2009; 85: 788 95.
    • 52. Kobayashi N, Kadono Y, Naito A, Matsumoto K, Yamamoto T, Tanaka S, et al. Segregation of TRAF6-mediated signaling pathways clarifies its role in osteoclastogenesis. Embo J 2001; 20: 1271 80.
    • 53. Koga T, Inui M, Inoue K, Kim S, Suematsu A, Kobayashi E et al. Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 2004; 428: 758 63.
    • 54. Kong YY, Feige U, Sarosi I, Bolon B, Tafuri A, Morony S et al. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 1999; 402: 304 9.
    • 55. Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 1999; 397: 315 23.
    • 56. Krajewski AC, Biessei J, Kunze M, Maersch S, Perabo L, Noack MJ. Influence of lipopolysaccharide and interleukin-6 on RANKL and OPG expression and release in human periodontal ligament cells. Apmis 2009; 117: 746 54.
    • 57. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998; 93: 165 76.
    • 58. Lamster IB, Kaluszhner-Shapira I, Herrera-Abreu M, Sinha R, Grbic JT. Serum IgG antibody response to Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis: implications for periodontal diagnosis. J Clin Periodontol 1998; 25: 510 6.
    • 59. Liu D, Xu JK, Figliomeni L, Huang L, Pavlos NJ, Rogers M, et al. Expression of RANKL and OPG mRNA in periodontal disease: possible involvement in bone destruction. Int J Mol Med 2003; 11: 17 21.
    • 60. Liu YC, Lerner UH, Teng YT. Cytokine responses against periodontal infection: protective and destructive roles. Periodontol 2000 2010; 52: 163 206.
    • 61. Lockhart DJ, Dong H, Byrne MC, Follettie MT, Gallo MV, Chee MS, et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol 1996; 14: 1675 80.
    • 62. Loesche WJ, Lopatin DE, Giordano J, Alcoforado G, Hujoel P. Comparison of the benzoyl-DL-arginine-naphthylamide (BANA) test, DNA probes, and immunological reagents for ability to detect anaerobic periodontal infections due to Porphyromonas gingivalis, Treponema denticola, and Bacteroides forsythus. J Clin Microbiol 1992; 30: 427 33.
    • 63. Lorenzo J, Horowitz M, Choi Y. Osteoimmunology: interactions of the bone and immune system. Endocr Rev 2008; 29: 403 40.
    • 64. Mackler BF, Frostad KB, Robertson PB, Levy BM. Immunoglobulin bearing lymphocytes and plasma cells in human periodontal disease. J Periodontal Res 1977; 12: 37 45.
    • 65. Matsuyama T, Kawai T, Izumi Y, Taubman MA. Expression of major histocompatibility complex class II and CD80 by gingival epithelial cells induces activation of CD4 T cells in response to bacterial challenge. Infect Immun 2005; 73: 1044 51.
    • 66. Mogi M, Otogoto J, Ota N, Togari A. differential expression of RANKL and osteoprotegerin in gingival crevicular fluid of patients with periodontitis. J Dent Res 2004; 83: 166 9.
    • 67. Mooney J, Adonogianaki E, Riggio MP, Takahashi K, Haerian A, Kinane DF. Initial serum antibody titer to Porphyromonas gingivalis influences development of antibody avidity and success of therapy for chronic periodontitis. Infect Immun 1995; 63: 3411 6.
    • 68. Mouton C, Hammond PG, Slots J, Genco RJ. Serum antibodies to oral Bacteroides asaccharolyticus (Bacteroides gingivalis): relationship to age and periondontal disease. Infect Immun 1981; 31: 182 92.
    • 69. Nagasawa T, Kobayashi H, Kiji M, Aramaki M, Mahanonda R, Kojima T, et al. LPS-stimulated human gingival fibroblasts inhibit the differentiation of monocytes into osteoclasts through the production of osteoprotegerin. Clin Exp Immunol 2002; 130: 338 44.
    • 70. Nair SP, Meghji S, Wilson M, Reddi K, White P, Henderson B. Bacterially induced bone destruction: mechanisms and misconceptions. Infect Immun 1996; 64: 2371 80.
    • 71. Nakajima T, Ueki-Maruyama K, Oda T, Ohsawa Y, Ito H, Seymour GJ, et al. Regulatory T-cells infiltrate periodontal disease tissues. J Dent Res 2005; 84: 639 43.
    • 72. Nemoto E, Darveau RP, Foster BL, Nogueira-Filho GR, Somerman MJ. Regulation of cementoblast function by P. gingivalis lipopolysaccharide via TLR2. J Dent Res 2006; 85: 733 8.
    • 73. Nisengard R, Beutner EH, Hazen SP. Immunologic studies of periodontal diseases. IV. Bacterial hypersensitivity and periodontal disease. J Periodontol 1968; 39: 329 32.
    • 74. Nisengard R, Beutner EH, Neugeboren N, Neiders M, Asaro J. Experimental induction of periodontal disease with Arthustype reactions. Clin Immunol Immunopathol 1977; 8: 97 104.
    • 75. Nisengard RJ. The role of immunology in periodontal disease. J Periodontol 1977; 48: 505 16.
    • 76. Nørskov-Lauritsen N, Kilian M. Reclassification of Actinobacillus actinomycetemcomitans, Haemophilus aphrophilus, Haemophilus paraphrophilus and Haemophilus segnis as Aggregatibacter actinomycetemcomitans gen. nov., comb. nov., Aggregatibacter aphrophilus comb. nov. and Aggregatibacter segnis comb. nov., and emended description of Aggregatibacter aphrophilus to include V factor-dependent and V factorindependent isolates. Int J Syst Evol Microbio 2006; 56: 2135 46.
    • 77. Page RC, Schroeder HE. Pathogenesis of inflammatory periodontal disease. A summary of current work. Lab Invest 1976; 34: 235 49.
    • 78. Razzouk S, Brunn JC, Qin C, Tye CE, Goldberg HA, Butler WT. Osteopontin posttranslational modifications, possibly phosphorylation, are required for in vitro bone resorption but not osteoclast adhesion. Bone 2002; 30: 40 7.
    • 79. Rossa C Jr, Liu M, Kirkwood KL. A dominant function of p38 mitogen-activated protein kinase signaling in receptor activator of nuclear factor-kappaB ligand expression and osteoclastogenesis induction by Aggregatibacter actinomycetemcomitans and Escherichia coli lipopolysaccharide. J Periodontal Res 2008; 43: 201 11.
    • 80. Sakaguchi S. Regulatory T cells: key controllers of immunologic self-tolerance. Cell 2000; 101: 455 8.
    • 81. Sakata M, Shiba H, Komatsuzawa H, Fujita T, Ohta K, Sugai M, et al. Expression of osteoprotegerin (osteoclastogenesis inhibitory factor) in cultures of human dental mesenchymal cells and epithelial cells. J Bone Miner Res 1999; 14: 1486 92.
    • 82. Sato N, Takahashi N, Suda K, Nakamura M, Yamaki M, Ninomiya T, et al. MyD88 but not TRIF is essential for osteoclastogenesis induced by lipopolysaccharide, diacyl lipopeptide, and IL-1alpha. J Exp Med 2004; 200: 601 11.
    • 83. Schaub B, Bellou A, Gibbons FK, Velasco G, Campo M, He H, et al. TLR2 and TLR4 stimulation differentially induce cytokine secretion in human neonatal, adult, and murine mononuclear cells. J Interferon Cytokine Res 2004; 24: 543 52.
    • 84. Seymour GJ, Greenspan JS. The phenotypic characterization of lymphocyte subpopulations in established human periodontal disease. J Periodontal Res 1979; 14: 39 46.
    • 85. Sharawy AM, Sabharwal K, Socransky SS, Lobene RR. A quantitative study of plaque and calculus formation in normal and periodontally involved mouths. J Periodontol 1966; 37: 495 501.
    • 86. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 1997; 89: 309 19.
    • 87. Socransky SS, Haffajee AD. The nature of periodontal diseases. Ann Periodontol 1997; 2: 3 10.
    • 88. Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL Jr. Microbial complexes in subgingival plaque. J Clin Periodontol 1998; 25: 134 44.
    • 89. Socransky SS, Haffajee AD, Ximenez-Fyvie LA, Feres M, Mager D. Ecological consideration in the treatment of Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis periodontal infections. Periodontol 2000 1999; 20: 341 62.
    • 90. Sosroseno W, Bird PS, Gemmell E, Seymour GJ. The role of CD4 cells in vivo on the induction of the immune response to Porphyromonas gingivalis in mice. J Periodontol 2002; 73: 1133 40.
    • 91. Suda K, Woo JT, Takami M, Sexton PM, Nagai K. Lipopolysaccharide supports survival and fusion of preosteoclasts independent of TNF-alpha, IL-1, and RANKL. J Cell Physiol 2002; 190: 101 8.
    • 92. Takai T. Roles of Fc receptors in autoimmunity. Nat Rev Immunol 2002; 2: 580 92.
    • 93. Takami M, Kim N, Rho J, Choi Y. Stimulation by toll-like receptors inhibits osteoclast differentiation. J Immunol 2002; 169: 1516 23.
    • 94. Takayanagi H. New immune connections in osteoclast formation. Ann NY Acad Sci 2010; 1192: 117 23.
    • 95. Takayanagi H. The role of NFAT in osteoclast formation. Ann NY Acad Sci 2007; 1116: 227 37.
    • 96. Takeba Y, Suzuki N, Kaneko A, Asai T, Sakane T. Evidence for neural regulation of inflammatory synovial cell functions by secreting calcitonin gene-related peptide and vasoactive intestinal peptide in patients with rheumatoid arthritis. Arthritis Rheum 1999; 42: 2418 29.
    • 97. Tanner AC, Kent RL Jr, Maiden MF, Macuch PJ, Taubman MA. Serum IgG reactivity to subgingival bacteria in initial periodontitis, gingivitis and healthy subjects. J Clin Periodontol 2000; 27: 473 80.
    • 98. Taubman MA, Kawai T. Involvement of T-lymphocytes in periodontal disease and in direct and indirect induction of bone resorption. Crit Rev Oral Biol Med 2001; 12: 125 35.
    • 99. Taubman MA, Kawai T, Han X. The new concept of periodontal disease pathogenesis requires new and novel therapeutic strategies. J Clin Periodontol 2007; 34: 367 9.
    • 100. Taubman MA, Valverde P, Han X, Kawai T. Immune response: the key to bone resorption in periodontal disease. J Periodontol 2005; 76: 2033 41.
    • 101. Taubman MA, Yoshie H, Ebersole JL, Smith DJ, Olson CL. Host response in experimental periodontal disease. J Dent Res 1984; 63: 455 60.
    • 102. Teng YA, Nguyen H, Gao X, Kong Y, Gorczynski RM, Singh B, et al. Functional human T-cell immunity and osteoprotegerin ligand control alveolar bone destruction in periodontal infection. J Clin Invest 2000; 106: R59 67.
    • 103. Teng YT. The role of acquired immunity and periodontal disease progression. Crit Rev Oral Biol Med 2003; 14: 237 52.
    • 104. Tew JG, Marshall DR, Moore WE, Best AM, Palcanis KG, Ranney RR. Serum antibody reactive with predominant organisms in the subgingival flora of young adults with generalized severe periodontitis. Infect Immun 1985; 48: 303 11.
    • 105. Tiranathanagul S, Yongchaitrakul T, Pattamapun K, Pavasant P. Actinobacillus actinomycetemcomitans lipopolysaccharide activates matrix metalloproteinase-2 and increases receptor activator of nuclear factor-kappaB ligand expression in human periodontal ligament cells. J Periodontol 2004; 75: 1647 54.
    • 106. Toto PD, Lin LM, Gargiulo AW. Immunoglobulins and complement in human periodontitis. J Periodontol 1978; 49: 631 4.
    • 107. Valverde P, Kawai T, Taubman MA. Potassium channelblockers as therapeutic agents to interfere with bone resorption of periodontal disease. J Dent Res 2005; 84: 488 99.
    • 108. Vernal R, Dutzan N, Hernandez M, Chandia S, Puente J, Leon R, et al. High expression levels of receptor activator of nuclear factor-kappa B ligand associated with human chronic periodontitis are mainly secreted by CD4 T lymphocytes. J Periodontol 2006; 77: 1772 80.
    • 109. Wada N, Maeda H, Yoshimine Y, Akamine A. Lipopolysaccharide stimulates expression of osteoprotegerin and receptor activator of NF-kappa B ligand in periodontal ligament fibroblasts through the induction of interleukin-1 beta and tumor necrosis factor-alpha. Bone 2004; 35: 629 35.
    • 110. Walsh NC, Crotti TN, Goldring SR, Gravallese EM. Rheumatic diseases: the effects of inflammation on bone. Immunol Rev 2005; 208: 228 51.
    • 111. Wang YH, Jiang J, Zhu Q, AlAnezi AZ, Clark RB, Jiang X, et al. Porphyromonas gingivalis lipids inhibit osteoblastic differentiation and function. Infect Immun 2010; 78: 3726 35.
    • 112. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 1998; 95: 3597 602.
    • 113. Yoshie H, Taubman MA, Ebersole JL, Smith DJ, Olson CL. Periodontal bone loss and immune characteristics of congenitally athymic and thymus cell-reconstituted athymic rats. Infect Immun 1985; 50: 403 8.
    • 114. Zadeh HH, Nichols FC, Miyasaki KT. The role of the cellmediated immune response to Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis in periodontitis. Periodontol 2000 1999; 20: 239 88.
    • 115. Lopatin DE, LaBelle D, Lee SW. Measurement of relative avidity of antibodies reactive with Porphyromonas (Bacteroides) gingivalis in the sera of subjects having adult periodontitis. J Periodontal Res 1991; 26: 167 72.
    • 116. de Vries TJ, Schoenmaker T, Wattanaroonwong N, van den Hoonaard M, Nieuwenhuijse A, Beertsen W, et al. Gingival fibroblasts are better at inhibiting osteoclast formation than periodontal ligament fibroblasts. J Cell Biochem 2006; 98: 370 82.
  • No related research data.
  • No similar publications.