Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Calcul, Laurent; Waterman, Carrie; Ma, Wai Sheung; Lebar, Matthew D.; Harter, Charles; Mutka, Tina; Morton, Lindsay; Maignan, Patrick; Van Olphen, Alberto; Kyle, Dennis E.; Vrijmoed, Lilian; Pang, Ka-Lai; Pearce, Cedric; Baker, Bill J. (2013)
Publisher: MDPI
Journal: Marine Drugs
Languages: English
Types: Article
Subjects: fungi, high-throughput, mangroves, malaria, endophytes, cytotoxicity, Biology (General), Article, QH301-705.5
We conducted a screening campaign to investigate fungi as a source for new antimalarial compounds. A subset of our fungal collection comprising Chinese mangrove endophytes provided over 5000 lipophilic extracts. We developed an accelerated discovery program based on small-scale cultivation for crude extract screening and a high-throughput malaria assay. Criteria for hits were developed and high priority hits were subjected to scale-up cultivation. Extracts from large scale cultivation were fractionated and these fractions subjected to both in vitro malaria and cytotoxicity screening. Criteria for advancing fractions to purification were developed, including the introduction of a selectivity index and by dereplication of known metabolites. From the Chinese mangrove endophytes, four new compounds (14–16, 18) were isolated including a new dimeric tetrahydroxanthone, dicerandrol D (14), which was found to display the most favorable bioactivity profile.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Rateb, M.E.; Ebel, R. Secondary metabolites of fungi from marine habitats. Nat. Prod. Rep. 2011, 28, 290-344.
    • 2. Xu, J. Biomolecules produced by mangrove-associated microbes. Curr. Med. Chem. 2011, 18, 5224-5266.
    • 3. Wu, J.; Xiao, Q.; Xu, J.; Li, M.Y.; Pan, J.Y.; Yang, M.H. Natural products from true mangrove flora: Source, chemistry and bioactivities. Nat. Prod. Rep. 2008, 25, 955-981.
    • 4. Omar, S.; Godard, K.; Ingham, A.; Hussain, H.; Wongpanich, V.; Pezzuto, J.; Durst, T.; Eklu, C.; Gbeassor, M.; Sanchez-Vindas, P.; et al. Antimalarial activities of gedunin and 7-methoxygedunin and synergistic activity with dillapiol. Ann. Appl. Biol. 2003, 143, 135-141.
    • 5. Castillo, U.; Harper, J.K.; Strobel, G.A.; Sears, J.; Alesi, K.; Ford, E.; Lin, J.; Hunter, M.; Maranta, M.; Ge, H.; et al. Kakadumycins, novel antibiotics from Streptomyces sp. NRRL, 30566, an endophyte of Grevillea pteridifolia. FEMS Microbiol. Lett. 2003, 224, 183-190.
    • 6. Isaka, M.; Suyarnsestakorn, C.; Tanticharoen, M.; Kongsaeree, P.; Thebtaranonth, Y. Aigialomycins A-E, new resorcylic macrolides from the marine mangrove fungus Aigialus parvus. J. Org. Chem. 2002, 67, 1561-1566.
    • 7. Feller, I.C.; Lovelock, C.E.; Berger, U.; McKee, K.L.; Joye, S.B.; Ball, M.C. Biocomplexity in mangrove ecosystems. Annu. Rev. Mar. Sci. 2010, 2, 395-417.
    • 8. Mangrove Forest Threats. Available online: http://wwf.panda.org/about_our_earth/blue_planet/ coasts/mangroves/mangrove_threats/ (accessed on 8 September 2013).
    • 9. Alongi, D.M. Present state of future and the world's mangrove forests. Environ. Conserv. J. 2002, 29, 331-349.
    • 10. Valiela, I.; Bowen, J.L.; York, J.K. Mangrove forests: one of the world's threatened major tropical environments. BioScience 2001, 51, 807-915.
    • 11. Polidoro, B.A.; Carpenter, K.E.; Collins, L.; Duke, N.C.; Ellison, A.M.; Farnsworth, E.J.; Fernando, E.S.; Kathiresan, K.; Koedam, N.E.; Livingstone, S.R.; et al. The loss of species: Mangrove extinction risk and geographic areas of global concern. PLoS One 2010, 5, e10095.
    • 12. Mace, G.M.; Norris, K.; Fitter, A.H. Biodiversity and ecosystem services: A multilayered relationship. Trends Ecol. Evol. 2011, 27, 19-26.
    • 13. Lebar, M.D.; Hahn, K.N.; Mutka, T.; Maignan, P.; van Olphen, A.; Kyle, D.E.; McClintock, J.B.; Amsler, C.D.; Baker, B.J. CNS and antimalarial activity of synthetic meridianin and psammopemmin analogs. Bioorg. Med. Chem. 2011, 19, 5756-5762.
    • 14. Kowalski, T.; Kehr, R.D. Endophytic fungal colonization of branch bases in several forest tree species. Sydowia 1992, 44, 137-168.
    • 15. Pang, K.L.; Vrijmoed, L.L.P.; Goh, T.K.; Plaingam, N.; Jones, G.E.B. Fungal endophytes associated with Kandelia candel (Rhizophoraceae) in Mai Po Nature Reserve, Hong Kong. Bot. Mar. 2008, 51, 171-178.
    • 16. Edwards, R.L.; Maitland, J.; Whalley, A.J.S. Metabolites of the higher fungi. Part 24. Cytochalasin N, O, P, Q, and R. New cytochalasins from the fungus Hypoxylon terricola Mill. J. Chem. Soc. Perkin Trans. I 1989, 57-65.
    • 17. Liu, J.; Jianwen, T.; Dong, Z.; Ding, Z.; Wang, X.; Liu, P. Neoengleromycin, a novel compound from Engleromyces goetzii. Helv. Chem. Acta 2002, 85, 1439-1442.
    • 18. Espada, A.; Rivera-Sagredo, A.; de la Fuente, J.M.; Hueso-Rodriguez, J.A.; Elson, S.W. New cytochalasins from the fungus Xylaria hypoxylon. Tetrahedron 1997, 53, 6485-5492.
    • 19. Konig, G.M.; Wright, A.D.; Angerhofer, C.K. Antimalarial diterpene isonitriles, isothiocyanates and isocyanates from the tropical marine sponge Cymbastela hooperi. J. Org. Chem. 1996, 61, 3259-3267.
    • 20. Namikoshi, M.; Akano, K.; Meguro, S.; Kasuga, I.; Mine, Y.; Takahashi, T.; Kobayashi, H. A new macrocyclic trichothecene, 12,13-deoxyroridin E, produced by the marine-derived fungus Myrothecium roridum collected in Palau. J. Nat. Prod. 2001, 64, 396-398.
    • 21. Pontius, A.; Mohamed, I.; Krick, A.; Kehraus, S.; Konig, G.M. Aromatic polyketides from marine algicolous fungi. J. Nat. Prod. 2008, 71, 272-274.
    • 22. Kokubun, T.; Bridge, P.D.; Simmonds, M.S.J. Dihydroisocoumarins and a tetralone from Cytospora eucalypticola. Phytochemistry 2003, 62, 779-782.
    • 23. Kamisuki, S.; Ishimaru, C.; Onoda, K.; Kuriyama, I.; Ida, N.; Sugawara, F.; Yoshida, H.; Mizushina, Y. Nodulisporol and nodulisporone, novel specific inhibitors of human DNA polymerase lambda from a fungus, Nodulisporium sp. Bioorg. Med. Chem. 2007, 15, 3109-3114.
    • 24. Ma, W.S. Natural Product Drug Discovery against Tropical Diseases. Ph.D. Thesis, Department of Chemistry, College of Arts and Sciences, University of South Florida, Tampa, FL, USA, 11 November 2011.
    • 25. Wagenaar, M.M.; Clardy, J. Dicerandrols, new antibiotic and cytotoxic dimers produced by the fungus Phomopsis longicolla isolated from an endangered mint. J. Nat. Prod. 2001, 64, 1006-1009.
    • 26. Yang, J.F.; Xu, F. Huang, C.H.; Li, J.; She, Z.G.; Pei, Z.; Lin, Y.C. Metabolites from the mangrove endophytic fungus Phomopsis sp. (#zsu-H76). Eur. J. Org. Chem. 2010, 2010, 3692-3695.
    • 27. Anderson, J.R.; Edward, R.L.; Whalley, A.C.J. Metabolites of the higher fungi. Part 22. 2-Butyl-3-methylsuccinic acid and 2-hexylidene-3-methylsuccinic acid from xylariaceous fungi. J. Chem. Soc. Perkin Trans. I 1985, 1481-1485.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article