LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Benazzi, Stefano; Nguyen, Huynh Nhu; Kullmer, Ottmar; Hublin, Jean-Jacques (2013)
Publisher: Public Library of Science
Languages: English
Types: Article
Subjects: Q, R, Research Article, Science, Medicine
ddc: ddc:590

Classified by OpenAIRE into

mesheuropmc: stomatognathic system
Most of the morphological features recognized in hominin teeth, particularly the topography of the occlusal surface, are generally interpreted as an evolutionary functional adaptation for mechanical food processing. In this respect, we can also expect that the general architecture of a tooth reflects a response to withstand the high stresses produced during masticatory loadings. Here we use an engineering approach, finite element analysis (FEA), with an advanced loading concept derived from individual occlusal wear information to evaluate whether some dental traits usually found in hominin and extant great ape molars, such as the trigonid crest, the entoconid-hypoconulid crest and the protostylid have important biomechanical implications. For this purpose, FEA was applied to 3D digital models of three Gorilla gorilla lower second molars (M2) differing in wear stages. Our results show that in unworn and slightly worn M2s tensile stresses concentrate in the grooves of the occlusal surface. In such condition, the trigonid and the entoconid-hypoconulid crests act to reinforce the crown locally against stresses produced along the mesiodistal groove. Similarly, the protostylid is shaped like a buttress to suffer the high tensile stresses concentrated in the deep buccal groove. These dental traits are less functional in the worn M2, because tensile stresses decrease physiologically in the crown with progressing wear due to the enlargement of antagonistic contact areas and changes in loading direction from oblique to nearly parallel direction to the dental axis. This suggests that the wear process might have a crucial influence in the evolution and structural adaptation of molars enabling to endure bite stresses and reduce tooth failure throughout the lifetime of an individual.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Berthaume M, Grosse IR, Patel ND, Strait DS, Wood S et al. (2010) The effect of early hominin occlusal morphology on the fracturing of hard food items. Anat Rec 293: 594-606. doi:10.1002/ar.21130.
    • 2. Kay RF (1975) The functional adaptations of primate molar teeth. Am J Phys Anthropol 43: 195-216. doi:10.1002/ajpa.1330430207. PubMed: 810034.
    • 3. Scott RS, Ungar PS, Bergstrom TS, Brown CA, Grine FE et al. (2005) Dental microwear texture analysis shows within-species diet variability in fossil hominins. Nature 436: 693-695. doi:10.1038/nature03822. PubMed: 16079844.
    • 4. Ungar P (2004) Dental topography and diets of Australopithecus afarensis and early Homo. J Hum Evol 46: 605-622. doi:10.1016/ j.jhevol.2004.03.004. PubMed: 15120268.
    • 5. Ungar PS, Sponheimer M (2011) The diets of early hominins. Science 334: 190-193. doi:10.1126/science.1207701. PubMed: 21998380.
    • 6. Kay RF, Hiiemae KM (1974) Jaw movement and tooth use in recent and fossil primates. Am J Phys Anthropol 40: 227-256. doi:10.1002/ ajpa.1330400210. PubMed: 4815136.
    • 7. Lawn BR, Lee JJW (2009) Analysis of fracture and deformation modes in teeth subjected to occlusal loading. Acta Biomaterialia 5: 2213-2221. doi:10.1016/j.actbio.2009.02.001. PubMed: 19268644.
    • 8. Benazzi S, Kullmer O, Grosse IR, Weber GW (2012) Brief communication: Comparing loading scenarios in lower first molar supporting bone structure using 3D finite element analysis. Am J Phys Anthropol 147: 128-134. doi:10.1002/ajpa.21607. PubMed: 21952986.
    • 9. Field C, Li Q, Li W, Swain M (2010) Biomechanical response in mandibular bone due to mastication loading on 3-unit fixed partial dentures. J Dent Biomech 1: 1-11.
    • 10. Lucas P (2004) Dental functional morphology: how teeth work. Cambridge: Cambridge University Press.
    • 11. Macho GA, Shimizu D (2010) Kinematic parameters inferred from enamel microstructure: new insights into the diet of Australopithecus anamensis. J Hum Evol 58: 23-32. doi:10.1016/j.jhevol.2009.07.004. PubMed: 19783029.
    • 12. Macho GA, Spears IR (1999) Effects of loading on the biomechanical [correction of biochemical] behavior of molars of Homo, Pan, and Pongo. Am J Phys Anthropol 109: 211-227. doi:10.1002/ (SICI)1096-8644(199906)109:2. PubMed: 10378459.
    • 13. Lee JJW, Morris D, Constantino PJ, Lucas PW, Smith TM et al. (2010) Properties of tooth enamel in great apes. Acta Biomaterialia 6: 4560-4565. doi:10.1016/j.actbio.2010.07.023. PubMed: 20656077.
    • 14. Sornsuwan T, Ellakwa A, Swain MV (2011) Occlusal geometrical considerations in all-ceramic pre-molar crown failure testing. Dent Mater 27: 1127-1134. doi:10.1016/j.dental.2011.08.005. PubMed: 21908033.
    • 15. Barani A, Keown AJ, Bush MB, Lee JJW, Chai H et al. (2011) Mechanics of longitudinal cracks in tooth enamel. Acta Biomaterialia 7: 2285-2292. doi:10.1016/j.actbio.2011.01.038. PubMed: 21296195.
    • 16. Constantino PJ, Lucas PW, Lee JJW, Lawn BR (2009) The influence of fallback foods on great ape tooth enamel. Am J Phys Anthropol 140: 653-660. doi:10.1002/ajpa.21096. PubMed: 19890852.
    • 17. Lucas P, Constantino P, Wood B, Lawn B (2008) Dental enamel as a dietary indicator in mammals. BioEssays 30: 374-385
    • 18. Schwartz GT (2000) Taxonomic and functional aspects of the patterning of enamel thickness distribution in extant large-bodied hominoids. Am J Phys Anthropol 111: 221-244. doi:10.1002/ (SICI)1096-8644(200002)111:2. PubMed: 10640949.
    • 19. Vogel ER, van Woerden JT, Lucas PW, Utami Atmoko SS, van Schaik CP et al. (2008) Functional ecology and evolution of hominoid molar enamel thickness: Pan troglodytes schweinfurthii and Pongo pygmaeus wurmbii. J Hum Evol 55: 60-74. doi:10.1016/j.jhevol.2007.12.005. PubMed: 18243275.
    • 20. Bajaj D, Arola D (2009) Role of prism decussation on fatigue crack growth and fracture of human enamel. Acta Biomaterialia 5: 3045-3056. doi:10.1016/j.actbio.2009.04.013. PubMed: 19433137.
    • 21. Chai H, Lee JJW, Constantino PJ, Lucas PW, Lawn BR (2009) Remarkable resilience of teeth. Proc Natl Acad Sci U S A 106: 7289-7293. doi:10.1073/pnas.0902466106. PubMed: 19365079.
    • 22. Lee JJW, Constantino PJ, Lucas PW, Lawn BR (2011) Fracture in teeth-a diagnostic for inferring bite force and tooth function. Biol Rev 86: 959-974. doi:10.1111/j.1469-185X.2011.00181.x. PubMed: 21507194.
    • 23. Myoung S, Lee J, Constantino P, Lucas P, Chai H et al. (2009) Morphology and fracture of enamel. J Biomech 42: 1947-1951. doi: 10.1016/j.jbiomech.2009.05.013. PubMed: 19559438.
    • 24. Spears IR, van Noort R, Crompton RH, Cardew GE, Howard IC (1993) The effects of enamel anisotropy on the distribution of stress in a tooth. J Dent Res 72: 1526-1531. doi:10.1177/00220345930720111101. PubMed: 8227704.
    • 25. Magne P, Belser UC (2002) Rationalization of shape and related stress distribution in posterior teeth: a finite element study using nonlinear contact analysis. Int J Periodontics Restorative Dent 22: 425-433. PubMed: 12449302.
    • 26. Chai H, Lee JJW, Kwon JY, Lucas PW, Lawn BR (2009) A simple model for enamel fracture from margin cracks. Acta Biomaterialia 5: 1663-1667. doi:10.1016/j.actbio.2008.11.007. PubMed: 19269906.
    • 27. Qasim T, Ford C, Bush MB, Hu X, Malament KA et al. (2007) Margin failures in brittle dome structures: relevance to failure of dental crowns. J Biomed Mater Res B Appl Biomater 80: 78-85. PubMed: 16615075.
    • 28. Anderson PS, Gill PG, Rayfield EJ (2011) Modeling the effects of cingula structure on strain patterns and potential fracture in tooth enamel. J Morphol 272: 50-65. doi:10.1002/jmor.10896. PubMed: 20960463.
    • 29. Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The Finite Element Method: Its Basis and Fundamentals. Oxford: Elsevier. 752pp.
    • 30. Benazzi S, Kullmer O, Grosse IR, Weber GW (2011) Using occlusal wear information and finite element analysis to investigate stress distributions in human molars. J of Anat 219: 259-272. doi:10.1111/j. 1469-7580.2011.01396.x.
    • 31. Kullmer O, Schulz D, Benazzi S (2012) An experimental approach to evaluate the correspondence between wear facet position and occlusal movements. Anat Rec 295: 846-852. doi:10.1002/ar.22440.
    • 32. Benazzi S, Grosse IR, Gruppioni G, Weber GW, Kullmer O (2013) Comparison of occlusal loading conditions in a lower second premolar using three-dimensional finite element analysis. Clin Oral Investig. doi: 10.1007/s00784-013-0973-8.
    • 33. Hlusko LJ (2004) Protostylid variation in Australopithecus. J Hum Evol 46: 579-594. doi:10.1016/j.jhevol.2004.03.003. PubMed: 15120266.
    • 34. Skinner MM, Wood BA, Hublin JJ (2009) Protostylid expression at the enamel-dentine junction and enamel surface of mandibular molars of Paranthropus robustus and Australopithecus africanus. J Hum Evol 56: 76-85. doi:10.1016/j.jhevol.2008.08.021. PubMed: 18986683.
    • 35. Ungar PS, M'Kirera F (2003) A solution to the worn tooth conundrum in primate functional anatomy. Proc Natl Acad Sci U S A 100: 3874-3877. doi:10.1073/pnas.0637016100. PubMed: 12634426.
    • 36. Kono RT (2004) Molar enamel thickness and distribution patterns in extant great apes and humans: New insights based on a 3-dimensional whole crown perspective. Anthropol Sci 112: 121-146. doi:10.1537/ase. 03106.
    • 37. Fleagle GJ (1999) Primate Adaptation and Evolution. San Diego: Academic Press.
    • 38. Smith BH (1984) Patterns of molar wear in hunter-gatherers and agriculturalists. Am J Phys Anthropol 63: 39-56. doi:10.1002/ajpa. 1330630107. PubMed: 6422767.
    • 39. Hattori Y, Satoh C, Kunieda T, Endoh R, Hisamatsu H et al. (2009) Bite forces and their resultants during forceful intercuspal clenching in humans. J Biomech 42: 1533-1538. doi:10.1016/j.jbiomech. 2009.03.040. PubMed: 19446816.
    • 40. Dejak B, Mlotkowski A, Romanowicz M (2007) Strength estimation of different designs of ceramic inlays and onlays in molars based on the Tsai-Wu failure criterion. J Prosthet Dent 98: 89-100. doi:10.1016/ S0022-3913(07)60042-0. PubMed: 17692590.
    • 41. Holmes DC, Diaz-Arnold AM, Leary JM (1996) Influence of post dimension on stress distribution in dentin. J Prosthet Dent 75: 140-147. doi:10.1016/S0022-3913(96)90090-6. PubMed: 8667271.
    • 42. Ko CC, Chu CS, Chung KH, Lee MC (1992) Effects of posts on dentin stress distribution in pulpless teeth. J Prosthet Dent 68: 421-427. doi: 10.1016/0022-3913(92)90404-X. PubMed: 1432755.
    • 43. Rubin C, Krishnamurthy N, Capilouto E, Yi H (1983) Stress analysis of the human tooth using a three-dimensional finite element model. J Dent Res 62: 82-86. doi:10.1177/00220345830620021701. PubMed: 6571871.
    • 44. Cheng YY, Li JY, Fok SL, Cheung WL, Chow TW (2010) 3D FEA of high-performance polyethylene fiber reinforced maxillary dentures. Dent Mater 26: e211-e219. doi:10.1016/j.dental.2010.05.002. PubMed: 20542552.
    • 45. Hasegawa A, Shinya A, Nakasone Y, Lassila LV, Vallittu PK et al. (2010) Development of 3D CAD/FEM Analysis System for Natural Teeth and Jaw Bone Constructed from X-Ray CT Images. Int J Biomater.
    • 46. Li H, Zhou ZR (2001) Wear behavior of human teeth in dry and artificial saliva conditions. Wear 249: 980-984. doi:10.1016/ S0043-1648(01)00835-3.
    • 47. Sornsuwan T, Swain MV (2012) The effect of margin thickness, degree of convergence and bonding interlayer on the marginal failure of glasssimulated all-ceramic crowns. Acta Biomater 8: 4426-4437. doi: 10.1016/j.actbio.2012.08.006. PubMed: 22902822.
    • 48. Wang M, Mehta N (2013) A possible biomechanical role of occlusal cusp-fossa contact relationships. J Oral Rehabil 40: 69-79. doi: 10.1111/j.1365-2842.2012.02333.x. PubMed: 22882571.
    • 49. Chang YH, Lin WH, Kuo WC, Chang CY, Lin CL (2009) Mechanical interactions of cuspal-coverage designs and cement thickness in a cusp-replacing ceramic premolar restoration: A finite element study. Med Biol Eng Comput 47: 367-374. doi:10.1007/s11517-008-0379-y. PubMed: 18679734.
    • 50. Benazzi S, Nguyen HN, Schulz D, Grosse IR, Gruppioni G et al. (2013) The Evolutionary Paradox of Tooth Wear: Simply Destruction or Inevitable Adaptation? PLOS ONE 8: e62263. doi:10.1371/ journal.pone.0062263. PubMed: 23638020.
    • 51. Kay RF (1985) Dental Evidence for the Diet of Australopithecus. Annu Rev Anthropol 14: 315-341. doi:10.1146/annurev.an. 14.100185.001531.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    73
    73%
    73
    73%
  • Discovered through pilot similarity algorithms. Send us your feedback.

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok