Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Marquardt, David A.; Doyle, Michael P.; Davidson, Jeffrey S.; Epp, Janet K.; Aitken, Jacqueline F.; Lemon, Douglas D.; Anthony-Cahill, Spencer J. (2012)
Publisher: MDPI
Journal: Journal of Functional Biomaterials
Languages: English
Types: Article
Subjects: extravasation, Biotechnology, dihemoglobin, R5-920, Medicine (General), pressor response, polyhemoglobin, Article, tetrahemoglobin, hemoglobin engineering, TP248.13-248.65
A recombinant 130 kDa dihemoglobin which is made up of a single-chain tetra-α globin and four β globins has been expressed as a soluble protein in E. coli. The sequence of the single chain tetra-α is: αI-Gly-αII-(SerGlyGly)5Ser-αIII-Gly-αIV. This dihemoglobin has been purified and characterized in vitro by size exclusion chromatography, electrospray mass spectroscopy, equilibrium oxygen binding, and analytical ultracentrifugation. The observed values of P50 and nmax for the dihemoglobin are slightly lower than those observed for the recombinant hemoglobin rHb1.1 (a “monohemoglobin” comprised of two β globins and an αI-Gly-αII diα-globin chain). Titration of the deoxy form of dihemoglobin with CO shows that all eight heme centers bind ligand. In vivo, dihemoglobin showed increased circulating halflife and a reduced pressor response in conscious rats when compared to rHb1.1. These observations suggest that dihemoglobin is an oxygen carrying molecule with desirable in vivo properties and provides a platform for an isooncotic hemoglobin solution derived solely from a recombinant source. A 260 kDa tetrahemoglobin has also been produced by chemical crosslinking of a dihemoglobin that contains a Lys16Cys mutation in the C-terminal α-globin subunit. Tetrahemoglobin also shows reduced vasoactivity in conscious rats that is comparable to that observed for dihemoglobin.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Winslow, R.M. Blood Substitutes; Academic Press: London, UK, 2006.
    • 2. Estep, T.; Bucci, E.; Farmer, M.; Greenburg, G.; Harrington, J.; Kim, H.W.; Klein, H.; Mitchell, P.; Nemo, G.; Olsen, K.; Palmer, A.; Valeri, C.R.; Winslow, R. Basic science focus on blood substitutes: A summary of the NHLBI Division of Blood Diseases and Resources Working Group Workshop, March 1, 2006. Transfusion 2008, 48, 776-782.
    • 3. Silverman, T.A.; Weiskopf, R.B. Hemoglobin-based oxygen carriers: Current status and future directions. Anesthesiology 2009, 111, 946-963.
    • 4. Mozzarelli, A.; Ronda, L.; Faggiano, S.; Bettati, S.; Bruno, S. Hemoglobin-based oxygen carriers: Research and reality towards an alternative to blood transfusions. Blood Transfus. 2010, 8, s59-s68.
    • 5. Levy, J.H. Hemoglobin-based oxygen carriers for reversing hypotension and shock. Anesthesiology 2011, 114, 1016-1018.
    • 6. Bunn, H.F.; Forget, B.F. Hemoglobin: Molecular, Genetic and Clinical Aspects; W. B. Saunders, Philadelphia, PA, USA, 1986.
    • 7. Bellelli, A.; Brunori, M.; Miele, A.E.; Panetta, G.; Vallone, B. The allosteric properties of hemoglobin: Insights from natural and site directed mutants. Curr. Prot. Pep. Sci. 2006, 7, 17-45.
    • 8. Looker, D.; Abbott-Brown, D.; Cozart, P.; Durfee, S.; Hoffman, S.; Mathews, A.J.; Miller-Roehrich, J.; Shoemaker, S.; Trimble, S.; Fermi, G.; et al. A human recombinant haemoglobin designed for use as a blood substitute. Nature 1992, 356, 258-260.
    • 9. Burhop, K.E.; Doyle, M.P. The development and preclinical testing of a second-generation recombinant hemoglobin solution, rHb2.0 for injection. In Microcirculatory Effects of Hemoglobin Solutions. Prog. Appl. Microcirc.; Messmer, K., Burhop, K.E., Hutter, J., Eds.; Karger: Basel, Switzerland, 2004; volume 25, pp. 48-64.
    • 10. Doherty, D.H.; Doyle, M.P.; Curry, S.R.; Vali, R.J.; Fattor, T.J.; Olson, J.S.; Lemon, D.D. Rate of reaction with nitric oxide determines the hypertensive effect of cell-free hemoglobin. Nat. Biotechnol. 1998, 16, 672-676.
    • 11. Resta, T.C.; Walker, B.R.; Eichinger, M.R.; Doyle, M.P. Rate of NO scavenging alters effects of recombinant hemoglobin solutions on pulmonary vasoreactivity. J. Appl. Physiol. 2002, 93, 1327-1336.
    • 12. Doyle, M.P.; Apostol, I.; Kerwin, B.A. Glutaraldehyde modification of recombinant hemoglobin alters its hemodynamic properties. J. Biol. Chem. 1999, 274, 2582-2591.
    • 13. Fronticelli, C.; Koehler, R.C.; Brinigar, W.S. Recombinant hemoglobins as artificial oxygen carriers. Artif. Cells Blood Substit. Immobil. Biotechnol. 2007, 35, 45-52.
    • 14. Matheson, B.; Kwansa, H.E.; Bucci, E.; Rebel, A.; Koehler, R.C. Vascular response to infusions of a nonextravasating hemoglobin polymer. J. Appl. Physiol. 2002, 93, 1479-1486.
    • 15. Hallewell, R.A.; Laria, I.; Tabrizi, A.; Carlin, G.; Getzoff, E.D.; Tainer, J.A.; Cousens, L.S.; Mullenbach, G.T. Genetically engineered polymers of human CuZn superoxide dismutase. Biochemistry and serum half-lives. J. Biol. Chem. 1989, 264, 5260-5268.
    • 16. Bizub, D.; Weber, I.T.; Cameron, C.E.; Leis, J.P.; Skalka, A.M. A range of catalytic efficiencies with avian retroviral protease subunits genetically linked to form single polypeptide chains. J. Biol. Chem. 1991, 266, 4951-4958.
    • 17. Robinson, C.R.; Sauer, R.T. Covalent attachment of Arc repressor subunits by a peptide linker enhances affinity for operator DNA. Biochemistry 1996, 35, 109-116.
    • 18. Bird, R.E.; Hardman, K.D.; Jacobson, J.W.; Johnson, S.; Kaufman, B.M.; Lee, S.-M.; Lee, T.; Pope, S.H.; Riordan, G.S.; Whitlow, M. Single-chain antigen binding proteins. Science 1988, 242, 423-426.
    • 19. Pack, P.; Plückthun, A. Miniantibodies: Use of amphipathic helixes to produce functional, flexibly linked dimeric FV fragments with high avidity in Escherichia coli. Biochemistry 1992, 31, 1579-1584.
    • 20. Holliger, P.; Prospero, T.; Winter, G. Diabodies: Small bivalent and bispecific antibody fragments. Proc. Natl. Acad. Sci. USA 1993, 90, 6444-6448.
    • 21. Neuhold, L.A.; Wold, B. HLH forced dimers: Tethering MyoD to E47 generates a dominant positive myogenic factor insulated from negative regulation by Id. Cell 1993, 74, 1033-1042.
    • 22. Argos, P. An investigation of oligopeptides linking domains in protein tertiary structures and possible candidates for general gene fusion. J. Mol. Biol. 1990, 211, 943-958.
    • 23. Weickert, M.J.; Curry, S.R. Turnover of recombinant human hemoglobin in Escherichia coli occurs rapidly for insoluble and slowly for soluble globin. Arch. Biochem. Biophys. 1997, 348, 337-346.
    • 24. Brucker, E.A. Genetically crosslinked hemoglobin: A structural study. Acta Crystallogr. D 2000, 56, 812-816.
    • 25. Asmundson. A.; Taber, A.M.; van der Walde, A.; Lin, D.; Olson, J.S.; Anthony-Cahill, S. Co-expression of α- and circularly permuted β-globins yields a hemoglobin with normal R state but modified T state properties. Biochemistry 2009, 48, 5456-5465.
    • 26. Wilhelm, E.; Battino, R.; Wilcock, R.J. Low-pressure solubility of gases in liquid water. Chem. Rev. 1977, 77, 219-262.
    • 27. Wang, C.-H.; Brinigar, W.S. A correlation of the visible and Soret spectra of dioxygen- and carbon monoxide-heme complexes and five-coordinate heme complexes with the spectra of oxy-, carboxy- and deoxyhemoglobins. Biochemistry 1979, 18, 4960-4977.
    • 28. Gould, S.A.; Sehgal, L.R.; Rosen, A.L.; Sehgal, H.L.; Moss, G.S. The efficacy of polymerized pyridoxylated hemoglobin solution as an O2 carrier. Ann. Surg. 1990, 211, 394-398.
    • 29. Ralston, G. Introduction to Analytical Ultracentrifugation; Beckman Instruments, Inc.: Fullerton, CA, USA, 1993.
    • 30. Wajcman, H.; Kister, J.; Marden, M.; Lahary, A.; Monconduit, M.; Galacteros, F. Hemoglobin Rouen (α-140 (HC2) Tyr→His): Alteration of the α-chain C-terminal region and moderate increase in oxygen affinity. Biochim. Biophys. Acta 1992, 1180, 53-57.
    • 31. Ishimori, K.; Hashimoto, M.; Imai, K.; Fushitani, K.; Miyazaki, G.; Morimoto, H.; Wada, Y.; Morishima, L. Site-directed mutagenesis in hemoglobin: Functional and structural role of the penultimate tyrosine in the α subunit. Biochemistry 1994, 33, 2546-2553.
    • 32. Winslow, R.M. Cell-free oxygen carriers: Scientific foundations, clinical development, and new directions. Biochim. Biophys. Acta 2008, 1784, 1382-1386.
    • 33. Cabrales, P.; Sun, G.; Zhou, Y.; Harris, D.R.; Tsai, A.G.; Intaglietta, M.; Palmer, A.F. Effects of the molecular mass of tense-state polymerized bovine hemoglobin on blood pressure and vasoconstriction. J. Appl. Physiol. 2009, 107, 1548-1558.
    • 34. Chang, T.M.S. Therapeutic applications of polymeric artificial cells. Nat. Rev. Drug Disc. 2005, 4, 221-235.
  • No related research data.
  • No similar publications.
  • BioEntity Site Name
    1c7bProtein Data Bank

Share - Bookmark

Cite this article