Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Chen, Z. -Q.; Fitzsimmons, P. J.; Kuwae, K.; Zhang, T. -S. (2008)
Publisher: The Institute of Mathematical Statistics
Languages: English
Types: Article
Subjects: 60J55, 60J57, 60H05, additive functional, 31C25, generalized Itô formula, Symmetric Markov process, dual additive functional, Mathematics - Probability, 31C25 (Primary) 60J57, 60J55, 60H05 (Secondary), stochastic integral, Revuz measure, time reversal, martingale additive functional, dual predictable projection
Using time-reversal, we introduce a stochastic integral for zero-energy additive functionals of symmetric Markov processes, extending earlier work of S. Nakao. Various properties of such stochastic integrals are discussed and an It\^{o} formula for Dirichlet processes is obtained.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Lemma 2.17. Let A be a finite rcll PrAF with defining sets {Ξ, Ξt, t ≥ 0}. There then exists a real-valued Borel function ϕ on EΔ × EΔ with ϕ(x, x) = 0 for x ∈ EΔ such that A with defining sets
    • Proof. Let Ξ ∈ F∞, Ξt ∈ Ftm, t > 0 be the defining sets of A admitting m-null set. We easily see rt−1(Ξt) ∩ {t < ζ} ⊂ rs−1(Ξs) ∩ {s < ζ} for s ∈ ]0, t[ by use of Lemma 2.15(i) and θt−sΞt ⊂ Ξs.
    • Set Ξbt := rt−1(Ξt) for t > 0 and Ξb := Tt>0 Ξbt. We then see that Ξb = Tt>0,t∈Q Ξbt by use of rt−1(Ξt) ∩ {t ≥ ζ} = {t ≥ ζ} and the monotonicity of Lemma 3.1.
    • Theorem 3.6. For an MAF M of finite energy, Λ(M ) defined above coincides on [[0, ζ[[ with Γ(M ) defined in (1.5), Pm-a.e. for all t > 0 by way of its subadditivity. Hence, we obtain (3.12).
    • (iii) Suppose that f ∈ F . Let Kt be a purely discontinuous local MAF on [[0, ζ[[ with Kt − Kt− = −ϕ(Xt−, Xt) − ϕ(Xt, Xt−) on ]0, ζ[. Then, 2 i,j=1 s [2] Chen, Z.-Q., Fitzsimmons, P. J., Kuwae, K. and Zhang, T.-S. (2008). Perturba-
    • tion of symmetric Markov processes. Probab. Theory Related Fields 140 239-275. [3] Chen, Z.-Q., Fitzsimmons, P. J., Takeda, M., Ying, J. and Zhang, T.-S. (2004).
    • Absolute continuity of symmetric Markov processes. Ann. Probab. 32 2067-2098.
    • MR2073186 [4] Fitzsimmons, P. J. (1995). Even and odd continuous additive functionals. In Dirich-
    • let Forms and Stochastic Processes (Beijing, 1993 ) (Z.-M. Ma, M. R¨ockner and
    • J.-A. Yan, eds.) 139-154. de Gruyter, Berlin. MR1366430 [5] Fitzsimmons, P. J. and Kuwae, K. (2004). Non-symmetric perturbations of sym-
    • metric Dirichlet forms. J. Funct. Anal. 208 140-162. MR2034295 [6] Fukushima, M. (1980). Dirichlet Forms and Markov Processes. North-Holland, Am-
    • sterdam. MR0569058 [7] Fukushima, M., O¯ shima, Y. and Takeda, M. (1994). Dirichlet Forms and Sym-
    • metric Markov Processes. de Gruyter, Berlin. MR1303354 [8] Getoor, R. K. (1986). Some remarks on measures associated with homogeneous ran-
    • dom measures. In Seminar on Stochastic Processes 1985 (E. C¸ inlar, K. L. Chung,
    • R. K. Getoor and J. Glover, eds.) 94-107. Birkh¨auser, Boston. MR0896738 [9] He, S. W., Wang, J. G. and Yan, J. A. (1992). Semimartingale Theory and Stochas-
    • tic Calculus. Science Press, Beijing. MR1219534 [10] Kuwae, K. (1998). Functional calculus for Dirichlet forms. Osaka J. Math. 35 683-
    • 715. MR1648400 [11] Kuwae, K. (2007). Maximum principles for subharmonic functions via local semi-
    • Dirichlet forms. Canad. J. Math. To appear. [12] Lunt, J., Lyons, T. J. and Zhang, T.-S. (1998). Integrability of functionals of
    • of heat kernels. J. Funct. Anal. 153 320-342. MR1614598 [13] Ma, Z.-M. and Ro¨ckner, M. (1992). Introduction to the Theory of (Non-Symmetric)
    • Dirichlet Forms. Springer, Berlin. [14] Nakao, S. (1985). Stochastic calculus for continuous additive functionals of zero
    • energy. Z. Wahrsch. Verw. Gebiete 68 557-578. MR0772199 [15] Sharpe, M. (1988). General Theory of Markov Processes. Academic Press, Boston,
    • MA. MR0958914 [16] Walsh, J. B. (1972). Markov processes and their functionals in duality. Z. Wahrsch.
    • Verw. Gebiete 24 229-246. MR0329056
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article