LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Doubleday, Zo? A.; Jones, Alice R.; Deveney, Marty R.; Ward, Tim M.; Gillanders, Bronwyn M. (2017)
Publisher: Public Library of Science
Journal: PLoS ONE
Languages: English
Types: Article
Subjects: Research Article, Habitats, Earth Sciences, Research Design, Ecology and Environmental Sciences, Surveys, Engineering and Technology, Ocean Temperature, Atmospheric Science, Marine Biology, Ecology, Marine and Aquatic Sciences, Environmental Engineering, Survey Research, Oil Spills, Climate Change, Biology and Life Sciences, Ecological Risk, Research and Analysis Methods, Community Ecology, Medicine, Marine Ecology, Q, R, Global Warming, Science, Oceanography, Climatology
Identifying the relative risk human activities pose to a habitat, and the ecosystem services they provide, can guide management prioritisation and resource allocation. Using a combination of expert elicitation to assess the probable effect of a threat and existing data to assess the level of threat exposure, we conducted a risk assessment for 38 human-mediated threats to eight marine habitats (totalling 304 threat-habitat combinations) in Spencer Gulf, Australia. We developed a score-based survey to collate expert opinion and assess the relative effect of each threat to each habitat, as well as a novel and independent measure of knowledge-based uncertainty. Fifty-five experts representing multiple sectors and institutions participated in the study, with 6 to 15 survey responses per habitat (n = 81 surveys). We identified key threats specific to each habitat; overall, climate change threats received the highest risk rankings, with nutrient discharge identified as a key local-scale stressor. Invasive species and most fishing-related threats, which are commonly identified as major threats to the marine environment, were ranked as low-tier threats to Spencer Gulf, emphasising the importance of regionally-relevant assessments. Further, we identified critical knowledge gaps and quantified uncertainty scores for each risk. Our approach will facilitate prioritisation of resource allocation in a region of increasing social, economic and environmental importance, and can be applied to marine regions where empirical data are lacking.

Share - Bookmark

Cite this article