LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Skaga, Simon Kleppevik (2017)
Publisher: UiT The Arctic University of Norway
Languages: English
Types: Master thesis
Subjects: VDP::Technology: 500, Glass Fibre Composites, Unmanned Aerial Vehicles, VDP::Teknologi: 500, Ultrasonic Testing, Wind Turbines, TEK-3901, Non-Destructive Testing, Risk Analysis
In this thesis, we have conducted a feasibility study on UAV application for ultrasonic pulsed non-destructive testing of wind turbine rotor blades. Due to the high initial cost of wind turbines, and their decreasing availability due to increasing size and offshore locations, it is imperative to properly maintain these structures over their 10-30-year lifetime. Operation and maintenance costs can account for 25-30% of the overall energy generation costs (MartinezLuengo, et al., 2016), where the wind turbine rotor blade can be considered the most critical component, accounting for 15-20% of the manufacturing costs. Thus, an increase in O&M efficiency of wind turbine rotor blades through condition monitoring can yield substantial financial benefits. Currently, Unmanned Aerial Vehicles (UAV) are in use for visual and thermography inspection of wind turbines. These techniques for structural condition monitoring does have serious limitations, as the condition of internal components in blades, built from glass fibre laminates, cannot be visually inspected. However, pulsed ultrasonic echo technique have proven highly efficient for wind turbine rotor blade inspection. The ultrasonic transducer requires surface contact with the examined material, and we investigated the potential of UAV implementation for fast, safe and reliable measurements of wind turbine rotor blades. This feasibility study investigates the applicability of ultrasonic testing of glass fibre laminates, specifically glass fibre produced by Lyngen Plast A/S. Firstly, we conducted handheld ultrasonic tests on simulated delamination defects, looking for damage indications on a voltage-time graph. Secondly, we induced damage on a 27mm thick sample through a 3-point bending test and measured the echo response from the ultrasonic pulse. The second experiment was repeated using a Storm AntiGravity UAV, producing promising results with preliminary instrumentation. A significant challenge to the feasibility of this study was the operational risks. We carried out a preliminary and qualitative risk assessment of the intended UAV operation by using the SWIFTanalysis and Bow-Tie method. The results were two important risk-mitigating measures. Risk reductive: “Design UAV for impact with wind turbine rotor blades,” and risk preventive: “Develop statistical data on wind conditions at wind turbine site, calculate low-risk dates for flight.” The implementation of the said measures, quality of our results, experiences from the UAV flight and concept considerations are presented throughout this paper. In the end, a conclusion is drawn and topics for future studies is presented.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article