Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Barré, Kévin; Le Viol, Isabelle; Julliard, Romain; Chiron, François; Kerbiriou, Christian (2017)
Publisher: John Wiley and Sons Inc.
Journal: Ecology and Evolution
Languages: English
Types: Article
Subjects: [ SDV.EE ] Life Sciences [q-bio]/Ecology, environment, pesticides, farming practices, plowing, [ SDV.BID.SPT ] Life Sciences [q-bio]/Biodiversity/Systematics, Phylogenetics and taxonomy, Original Research, weed control, farmland biodiversity, chiroptera
International audience; The increased use of pesticides and tillage intensification is known to negatively affect biodiversity. Changes in these agricultural practices such as herbicide and tillage reduction have variable effects among taxa, especially at the top of the trophic network including insectivorous bats. Very few studies compared the effects of agricultural practices on such taxa, and overall, only as a comparison of conventional versus organic farming without accurately accounting for underlying practices, especially in conventional where many alternatives exist. Divergent results founded in these previous studies could be driven by this lack of clarification about some unconsidered practices inside both conventional and organic systems. We simultaneously compared, over whole nights, bat activity on contiguous wheat fields of one organic and three conventional farming systems located in an intensive agricultural landscape. The studied organic fields (OT) used tillage (i.e., inversion of soil) without chemical inputs. In studied conventional fields, differences consisted of the following: tillage using few herbicides (T), conservation tillage (i.e., no inversion of soil) using few herbicides (CT), and conservation tillage using more herbicide (CTH), to control weeds. Using 64 recording sites (OT = 12; T = 21; CT = 13; CTH = 18), we sampled several sites per system placed inside the fields each night. We showed that bat activity was always higher in OT than in T systems for two (Pipistrellus kuhlii and Pipistrellus pipistrellus) of three species and for one (Pipistrellus spp.) of two genera, as well as greater species richness. The same results were found for the CT versus T system comparison. CTH system showed higher activity than T for only one genus (Pipistrellus spp.). We did not detect any differences between OT and CT systems, and CT showed higher activity than CTH system for only one species (Pipistrellus kuhlii). Activity in OT of Pipistrellus spp. was overall 3.6 and 9.3 times higher than CTH and T systems, respectively, and 6.9 times higher in CT than T systems. Our results highlight an important benefit of organic farming and contrasted effects in conventional farming. That there were no differences detected between the organic and one conventional system is a major result. This demonstrates that even if organic farming is presently difficult to implement and requires a change of economic context for farmers, considerable and easy improvements in conventional farming are attainable, while maintaining yields and approaching the ecological benefits of organic methods.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Agreste (2010). Utilised Agricultural Land in Ile-de-France region. Retrieved 4 October 2016 from http://agreste.agriculture.gouv.fr/IMG/pdf_ R1111RA01.pdf
    • Agreste (2011). Proportion of conservation tillage in arable land. Retrieved 8 October 2017 from https://stats.agriculture.gouv.fr/disar/faces/report/welcomeReport.jsp
    • Azam, C., Le Viol, I., Julien, J. F., Bas, Y., & Kerbiriou, C. (2016). Disentangling the relative effect of light pollution, impervious surfaces and intensive agriculture on bat activity with a national-scale monitoring program. Landscape Ecology, 31, 2471-2483. https://doi.org/10.1007/ s10980-016-0417-3
    • Barton, K. (2015). MuMIn: Multi-Model Inference. Retrieved from http:// cran.r-project.org/package=MuMIn
    • Bas, Y., Bas, D., & Julien, J. (2017). Tadarida: A toolbox for animal detection on acoustic recordings. Journal of open research software, 5, 1-8. https://doi.org/10.5334/jors.154
    • Bayat, S., Geiser, F., Kristiansen, P., & Wilson, S. C. (2014). Organic contaminants in bats: Trends and new issues. Environment International, 63, 40-52. https://doi.org/10.1016/j.envint.2013.10.009
    • Bengtsson, J., Ahnström, J., & Weibull, A. (2005). The effects of organic agriculture on biodiversity and abundance: A metaanalysis. Journal of Applied Ecology, 42, 261-269. https://doi. org/10.1111/j.1365-2664.2005.01005.x
    • Benton, T. G., Vickery, J. A., & Wilson, J. D. (2003). Farmland biodiversity: Is habitat heterogeneity the key? Trends in Ecology and Evolution, 18, 182-188. https://doi.org/10.1016/s0169-5347(03)00011-9
    • Bitzer, R. J., Buckelew, L. D., & Pedigo, L. P. (2002). Effects of transgenic herbicide-resistant soybean varieties and systems on surface-active springtails (Entognatha: Collembola). Environmental Entomology, 31, 449-461. https://doi.org/10.1603/0046-225x-31.3.449
    • Boughey, K. L., Lake, I. R., Haysom, K. A., & Dolman, P. M. (2011). Effects of landscape-scale broadleaved woodland configuration and extent on roost location for six bat species across the UK. Biological Conservation, 144, 2300-2310. https://doi.org/10.1016/j. biocon.2011.06.008
    • Boyles, J. G., Cryan, P. M., McCracken, G. F., & Kunz, T. K. (2011). Economic importance of bats in agriculture. Science, 332, 41-42. https://doi. org/10.1126/science.1201366
    • Cardinale, B. J., Duffy, J. E., Gonzalez, A., Hooper, D. U., Perrings, C., Venail, P., … Naeem, S. (2012). Biodiversity loss and its impact on humanity. Nature, 489, 326. https://doi.org/10.1038/nature11373
    • Charbonnier, Y., Barbaro, L., Theillout, A., & Jactel, H. (2014). Numerical and functional responses of forest bats to a major insect pest in pine plantations. PLoS ONE, 9, 1-8. https://doi.org/10.1371/journal. pone.0109488
    • Chatterjee, S., & Hadi, A. S. (2006). Regression analysis by example, 5th ed. Hoboken, NJ: John Wiley & Sons, Inc.. https://doi. org/10.1002/0470055464
    • Crowder, D. W., & Reganold, J. P. (2015). Financial competitiveness of organic agriculture on a global scale. Proceedings of the National Academy of Sciences of the United States of America, 112, 7611-7616. https://doi. org/10.1073/pnas.1423674112
    • Dick, R. P. (1992). A review: Long-term effects of agricultural systems on soil biochemical and microbial parameters. Agriculture, Ecosystems and Environment, 40, 25-36. https://doi.org/10.1016/0167-8809(92)90081-l
    • Ecophyto (2015). Trend of pesticides use. Retrieved 5 November 2017 from http://agriculture.gouv.fr/sites/minagri/files/20160301_notesuivi_ ecophyto2.pdf
    • Eurostat (2009). Agri-environmental indicator. Retrieved 5 November 2017 from http://ec.europa.eu/eurostat/statistics-explained/index.php/ Agri-environmental_indicator_-_commitments
    • Eurostat (2015). Organic farming statistics. Retrieved 5 November 2017 from http://ec.europa.eu/eurostat/statistics-explained/index.php/ Organic_farming_statistics
    • Evans, S. C., Shaw, E. M., & Rypstra, A. L. (2010). Exposure to a glyphosatebased herbicide affects agrobiont predatory arthropod behaviour and long-term survival. Ecotoxicology, 19, 1249-1257. https://doi. org/10.1007/s10646-010-0509-9
    • FAO (2011). Agricultural area. Retrieved 5 November 2017 from http:// www.fao.org/faostat/en/#data/EL
    • FiBL (2014). Organic farming statistics. Retrieved 5 November 2017 from http://www.fibl.org/en/themes/organic-farming-statistics. html
    • Filippi-Codaccioni, O., Clobert, J., & Julliard, R. (2009). Effects of organic and soil conservation management on specialist bird species. Agriculture, Ecosystems & Environment, 129, 140-143. https://doi.org/10.1016/j. agee.2008.08.004
    • Fischer, J., Brosi, B., Daily, G. C., Ehrlich, P. R., Goldman, R., Goldstein, J., … Tallis, H. (2008). Should agricultural policies encourage land sparing or wildlife-friendly farming? Frontiers in Ecology and the Environment, 6, 380-385. https://doi.org/10.1890/070019
    • Flickinger, E. L., & Pendleton, G. W. (1994). Bird use of agricultural fields under reduced and conventional tillage in the Texas panhandle. Wildlife Society Bulletin, 22, 34-42.
    • Fuentes-Montemayor, E., Goulson, D., & Park, K. J. (2011). Pipistrelle bats and their prey do not benefit from four widely applied agri-environment management prescriptions. Biological Conservation, 144, 2233-2246. https://doi.org/10.1016/j.biocon.2011.05.015
    • Fuller, R. J., Norton, L. R., Feber, R. E., Johnson, P. J., Chamberlain, D. E., Joys, A. C., … Firbank, L. G. (2005). Benefits of organic farming to biodiversity vary among taxa. Biology letters, 1, 431-434. https://doi. org/10.1098/rsbl.2005.0357
    • Gamero, A., Brotons, L., Brunner, A., Foppen, R., Fornasari, L., Gregory, R. D., … Voříšek, P. (2017). Tracking progress towards EU biodiversity strategy targets: EU policy effects in preserving its common farmland birds. Conservation Letters, 10(4), 395-402. https://doi.org/10.1111/ conl.12292
    • Geiger, F., Bengtsson, J., Berendse, F., Weisser, W. W., Emmerson, M., Morales, M. B., … Inchausti, P. (2010). Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic and Applied Ecology, 11, 97-105. https://doi. org/10.1016/j.baae.2009.12.001
    • Gurr, G. M., Lu, Z., Zheng, X., Xu, H., Zhu, P., Chen, G., … Heong, K. L. (2016). Multi-country evidence that crop diversification promotes ecological intensification of agriculture. Nature Plants, 2, 16014. https://doi. org/10.1038/nplants.2016.14
    • Hayes, J. P. (1997). Temporal variation in activity of bats and the design of echolocation-monitoring studies. Journal of Mammalogy, 78, 514-524. https://doi.org/10.2307/1382902
    • Hoisington, D., Khairallah, M., Reeves, T., Ribaut, J. M., Skovmand, B., Taba, S., & Warburton, M. (1999). Plant genetic resources: What can they contribute toward increased crop productivity? Proceedings of the National Academy of Sciences of the United States of America, 96, 5937- 5943. https://doi.org/10.1073/pnas.96.11.5937
    • Hole, D. G., Perkins, A. J., Wilson, J. D., Alexander, I. H., Grice, P. V., & Evans, A. D. (2005). Does organic farming benefit biodiversity? Biological Conservation, 122, 113-130. https://doi.org/10.1016/j. biocon.2004.07.018
    • Holland, J. M. (2004). The environmental consequences of adopting conservation tillage in Europe: Reviewing the evidence. Agriculture, Ecosystems and Environment, 103, 1-25. https://doi.org/10.1016/j.agee.2003.12.018
    • Holland, J. M., & Reynolds, C. J. M. (2003). The impact of soil cultivation on arthropod (Coleoptera and Araneae) emergence on arable land. Pedobiologia, 47, 181-191. https://doi.org/10.1078/0031-4056-00181
    • Hossard, L., Guichard, L., Pelosi, C., & Makowski, D. (2017). Lack of evidence for a decrease in synthetic pesticide use on the main arable crops in France. Science of the Total Environment, 575, 152-161. https:// doi.org/10.1016/j.scitotenv.2016.10.008
    • Kleijn, D., Baquero, R. A., Clough, Y., Díaz, M., De Esteban, J., Fernández, F., … Yela, J. L. (2006). Mixed biodiversity benefits of agri-environment schemes in five European countries. Ecology Letters, 9, 243-254. https://doi.org/10.1111/j.1461-0248.2005.00869.x
    • Kleijn, D., Rundlöf, M., Scheper, J., Smith, H. G., & Tscharntke, T. (2011). Does conservation on farmland contribute to halting the biodiversity decline? Trends in Ecology and Evolution, 26, 474-481. https://doi. org/10.1016/j.tree.2011.05.009
    • Kleijn, D., & Sutherland, W. J. (2003). How effective are European schemes in and promoting conserving biodiversity? Journal of Applied Ecology, 40, 947-969. https://doi.org/10.1111/j.1365-2664.2003.00868.x
    • Kunz, T. H., de Torrez, E. B., Bauer, D., Lobova, T., & Fleming, T. H. (2011). Ecosystem services provided by bats. Annals of the New York Academy of Sciences, 1223, 1-38. https://doi. org/10.1111/j.1749-6632.2011.06004.x
    • Lacoeuilhe, A., Machon, N., Julien, J. F., & Kerbiriou, C. (2016). Effects of hedgerows on bats and bush crickets at different spatial scales. Acta Oecologica, 71, 61-72. https://doi.org/10.1016/j.actao.2016.01.009
    • Lechenet, M., Dessaint, F., Py, G., Makowski, D., & Munier-jolain, N. (2017). Reducing pesticide use while preserving crop productivity and profitability on arable farms. Nature Plants, 3, 17008. https://doi. org/10.1038/nplants.2017.8
    • Lokemoen, J. T., & Beiser, J. A. (1997). Bird use and nesting in conventional, minimum-tillage and organic cropland. Journal of Wildlife Management, 61, 644-655. https://doi.org/10.2307/3802172
    • MacDonald, M.A., Cobbold, G., Mathews, F., Denny, M.J. H., Walker, L. K., Grice, P. V., & Anderson, G. Q. A. (2012). Effects of agri-environment management for cirl buntings on other biodiversity. Biodiversity and Conservation, 21, 1477-1492. https://doi.org/10.1007/s10531-012-0258-6
    • Maxwell, S. L., Fuller, R. A., Brooks, T. M., & Watson, J. E. M. (2016). The ravages of guns, nets and bulldozers. Nature, 536, 143-145. https:// doi.org/10.1038/536143a
    • Moran, P. A. P. (1950). Notes on continuous stochastic phenomena. Biometrika, 37, 17-23. https://doi.org/10.1093/biomet/37.1-2.17
    • Obrist, M. K., Boesch, R., & Fluckiger, P. F. (2004). Variability in echolocation call design of 26 Swiss bat species: Consequences, limits and options for automated field identification with a synergetic pattern recognition approach. Mammalia, 68, 307-322. https://doi.org/10.1515/ mamm.2004.030
    • Park, K. J. (2015). Mitigating the impacts of agriculture on biodiversity: Bats and their potential role as bioindicators. Mammalian Biology, 80, 191-204. https://doi.org/10.1016/j.mambio.2014.10.004
    • Pe'er, G., Dicks, L. V., Visconti, P., Arlettaz, R., Báldi, A., Benton, T. G., … Scott, A. V. (2014). EU agricultural reform fails on biodiversity. Science, 344, 1090-1092. https://doi.org/10.1126/science.1253425
    • Pereira, J. L., Picanço, M. C., Silva, A. A., Barros, E. C., Xavier, V. M., & Gontijo, P. C. (2007). Effect of herbicides on soil arthropod community of bean cultivated under no-tillage and conventional systems. Planta Daninha, 25, 61-69. https://doi.org/10.1590/s0100-83582007000100007
    • Petit, S., Munier-Jolain, N., Bretagnolle, V., Bockstaller, C., Gaba, S., Cordeau, S., … Colbach, N. (2015). Ecological intensification through pesticide reduction: Weed control, weed biodiversity and sustainability in arable farming. Environmental Management, 56, 1078-1090. https:// doi.org/10.1007/s00267-015-0554-5
    • Pocock, M. J. O., & Jennings, N. (2008). Testing biotic indicator taxa: The sensitivity of insectivorous mammals and their prey to the intensification of lowland agriculture. Journal of Applied Ecology, 45, 151-160. https://doi.org/10.1111/j.1365-2664.2007.01361.x
    • Ponisio, L. C., M'Ggonigle, L. K., Mace, K. C., Palomino, J., De Valpine, P., & Kremen, C. (2015). Diversification practices reduce organic to conventional yield gap. Proceedings of the Royal Society B, 282, 20141396. https://doi.org/10.1098/rspb.2014.1396
    • Power, A. G. (2010). Ecosystem services and agriculture: Tradeoffs and synergies. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 2959-2971. https://doi.org/10.1098/rstb.2010.0143
    • Reganold, J. P., Batie, S. S., Harwood, R. R., Kornegay, J. L., Bucks, D., Flora, C. B., … Sehmsdorf, H. (2011). Transforming U.S. agriculture. Science, 332, 9-10. https://doi.org/10.1126/science.1202462
    • Rodríguez, E., Fernández-Anero, F. J., Ruiz, P., & Campos, M. (2006). Soil arthropod abundance under conventional and no tillage in a Mediterranean climate. Soil and Tillage Research, 85, 229-233. https:// doi.org/10.1016/j.still.2004.12.010
    • Russo, D., & Jones, G. (2015). Bats as bioindicators: An introduction. Mammalian Biology, 80, 157-158. https://doi.org/10.1016/j. mambio.2015.03.005
    • Shutler, D., Mullie, A., & Clark, R. G. (2000). Bird communities of prairie uppland and wetlands in relation to farming practices in Saskatchewan. Conservation Biology, 14, 1441-1451. https://doi. org/10.1046/j.1523-1739.2000.98246.x
    • Skalak, S. L., Sherwin, R. E., & Brigham, R. M. (2012). Sampling period, size and duration influence measures of bat species richness from acoustic surveys. Methods in Ecology and Evolution, 3, 490-502. https://doi. org/10.1111/j.2041-210x.2011.00177.x
    • Stechert, C., Kolb, M., Bahadir, M., Djossa, B. A., & Fahr, J. (2014). Insecticide residues in bats along a land use-gradient dominated by cotton cultivation in northern Benin, West Africa. Environmental Science and Pollution Research, 21, 8812-8821. https://doi.org/10.1007/ s11356-014-2817-8
    • Taylor, R. L., Maxwell, B. D., & Boik, R. J. (2006). Indirect effects of herbicides on bird food resources and beneficial arthropods. Agriculture, Ecosystems and Environment, 116, 157-164. https://doi.org/10.1016/j. agee.2006.01.012
    • Teillard, F., Doyen, L., Dross, C., Jiguet, F., & Tichit, M. (2016). Optimal allocations of agricultural intensity reveal win-no loss solutions for food production and biodiversity. Regional Environmental Change, 17(5), 1397-1408. https://doi.org/10.1007/s10113-016-0947-x
    • Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I., & Thies, C. (2005). Landscape perspectives on agricultural intensification and biodiversity - Ecosystem service management. Ecology Letters, 8, 857-874. https://doi.org/10.1111/j.1461-0248.2005.00782.x
    • Vaughan, N. (1997). The diets of British bats (Chiroptera). Mammal Review, 27, 77-94. https://doi.org/10.1111/j.1365-2907.1997.tb00373.x
    • Wardle, D. A., Nicholson, K. S., Bonner, K. I., & Yeates, G. W. (1999). Effects of agricultural intensification on soil-associated arthropod population dynamics, community structure, diversity and temporal variability over a seven-year period. Soil Biology and Biochemistry, 31, 1691-1706. https://doi.org/10.1016/s0038-0717(99)00089-9
    • Wickramasinghe, L. P., Harris, S., Jones, G., & Jennings, N. V. (2004). Abundance and species richness of nocturnal insects on organic and conventional farms: Effects of agricultural intensification on bat foraging. Conservation Biology, 18, 1283-1292. https://doi. org/10.1111/j.1523-1739.2004.00152.x
    • Wickramasinghe, L. P., Harris, S., Jones, G., & Vaughan, N. (2003). Bat activity and species richness on organic and conventional farms: Impact of agricultural intensification. Journal of Applied Ecology, 40, 984-993. https://doi.org/10.1111/j.1365-2664.2003.00856.x
    • Zimmermann, A., & Britz, W. (2016). European farms' participation in agrienvironmental measures. Land Use Policy, 50, 214-228. https://doi. org/10.1016/j.landusepol.2015.09.019
    • Zuur, A., Ieno, E., & Elphick, C. (2010). A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution, 1, 3-14. https://doi.org/10.1111/j.2041-210x.2009.00001.x
    • Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A., & Smith, G. M. (2009). Mixed effects models and extensions in ecology with R. New York, NY: Springer Science & Business Media, Statistics for Biology and Health. https://doi.org/10.1007/978-0-387-87458-6
  • No related research data.
  • No similar publications.