LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Raphaela Putzhammer; Christian Doppler; Thomas Jakschitz; Katharina Heinz; Juliane Förste; Katarina Danzl; Barbara Messner; David Bernhard
Publisher: Public Library of Science (PLoS)
Journal: PLoS ONE
Languages: English
Types: Article
Subjects: Toxicity, Habits, Endothelial Cells, Research Article, Anatomy, Substance-Related Disorders, Electronic Cigarettes, Nicotine Addiction, Pathology and Laboratory Medicine, Oxidative Damage, Vapors, Polymer chemistry, Mental Health and Psychiatry, Chemical Compounds, Physical sciences, Psychology, Biological Tissue, Public and Occupational Health, Physics, Reactive Oxygen Species, States of Matter, Behavior, Smoking Habits, Fluids, Toxicology, Chemistry, Cellular Types, Glycols, Biology and Life Sciences, Addiction, Epithelial Cells, Animal Cells, Medicine, Monomers (Chemistry), Glycerol, Q, R, Cell Biology, Social Sciences, Biochemistry, Science, Epithelium, Medicine and Health Sciences

Classified by OpenAIRE into

mesheuropmc: biological sciences
The present study was conducted to provide toxicological data on e-cigarette vapours of different e-cigarette brands and liquids from systems viewed as leaders in the e-cigarette market and to compare e-cigarette vapour toxicity to the toxicity of conventional strong high-nicotine cigarette smoke. Using an adapted version of a previously constructed cigarette smoke constituent sampling device, we collected the hydrophilic fraction of e-cigarette vapour and exposed human umbilical vein endothelial cells (HUVECs) to the mixture of compounds present in the vapour of 4 different single-use e-cigarettes, 6 different liquid vapours produced by the same refillable e-cigarette, and one e-cigarette with an exchangeable liquid cartridge. After incubation of cells with various concentrations and for various periods of time we analysed cell death induction, proliferation rates, the occurrence of intra-cellular reactive oxygen species, cell morphology, and we also measured e-cigarette heating coil temperatures. Overall, conventional cigarette smoke extract showed the most severe impact on endothelial cells. However, some e-cigarette vapour extracts showed high cytotoxicity, inhibition of cell proliferation, and alterations in cell morphology, which were comparable to conventional high-nicotine cigarettes. The vapours generated from different liquids using the same e-cigarette show substantial differences, pointing to the liquids as an important source for toxicity. E-cigarette vapour-mediated induction of oxidative stress was significant in one out of the 11 analysed vapours. There is a high variability in the acute cytotoxicity of e-cigarette vapours depending on the liquid and on the e-cigarettes used. Some products showed toxic effects close to a conventional high-nicotine cigarette. Liquid nicotine, menthol content, and the formation of acute intracellular reactive oxygen species do not seem to be the central elements in e-cigarette vapour toxicity.

Share - Bookmark

Cite this article

Collected from