LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
KULAKSIZ, Ahmet Afşin (2012)
Publisher: TUBITAK
Journal: Turkish Journal of Electrical Engineering and Computer Science
Languages: English
Types: Article
Subjects: ANFIS, single diode model, equivalent circuit parameter, maximum power point tracking, PV system
The performance and system cost of photovoltaic (PV) systems can be improved by employing high-efficiency power conditioners with maximum power point tracking (MPPT) methods. Fast implementation and accurate operation of MPPT controllers can be realized by modeling the characteristics of PV modules, obtaining equivalent parameters. In this study, adaptive neuro-fuzzy inference systems (ANFISs) have been used to obtain 3 of the parameters in a single-diode model of PV cells, namely series resistance, shunt resistance, and diode ideality factor. The input parameters of ANFISs are a material-type of PV modules, short circuit current, open circuit voltage, and unit area under the I-V curve of the PV module. The advantage of the proposed method is that the equivalent parameters can be obtained for a wide range of PV modules of different types (monocrystalline, multicrystalline, and thin-film) using easily obtainable electrical parameters. To demonstrate the accuracy of the proposed model, MPPT control is implemented in a PV system with a battery charge application for 3 different types of PV modules. The obtained results suggest that the ANFIS model appears to be a useful tool for estimating the equivalent parameters of PV modules.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article