LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Daniel Hodyss; Craig H. Bishop; Matthias Morzfeld (2016)
Publisher: Taylor & Francis Group
Journal: Tellus: Series A
Languages: English
Types: Article
Subjects: variational methods, Meteorology. Climatology, QC851-999, Meteorology; Numerical Weather Prediction, GC1-1581, Data assimilation; Ensemble Methods; Variational Methods, ensemble methods, Oceanography, data assimilation
Recently there has been a surge in interest in coupling ensemble-based data assimilation methods with variational methods (commonly referred to as 4DVar). Here we discuss a number of important differences between ensemble-based and variational methods that ought to be considered when attempting to fuse these methods. We note that the Best Linear Unbiased Estimate (BLUE) of the posterior mean over a data assimilation window can only be delivered by data assimilation schemes that utilise the 4-dimensional (4D) forecast covariance of a prior distribution of non-linear forecasts across the data assimilation window. An ensemble Kalman smoother (EnKS) may be viewed as a BLUE approximating data assimilation scheme. In contrast, we use the dual form of 4DVar to show that the most likely non-linear trajectory corresponding to the posterior mode across a data assimilation window can only be delivered by data assimilation schemes that create counterparts of the 4D prior forecast covariance using a tangent linear model. Since 4DVar schemes have the required structural framework to identify posterior modes, in contrast to the EnKS, they may be viewed as mode approximating data assimilation schemes. Hence, when aspects of the EnKS and 4DVar data assimilation schemes are blended together in a hybrid, one would like to be able to understand how such changes would affect the mode- or mean-finding abilities of the data assimilation schemes. This article helps build such understanding using a series of simple examples. We argue that this understanding has important implications to both the interpretation of the hybrid state estimates and to their design.Keywords: data assimilation, ensemble methods, variational methods(Published: 30 September 2016)Citation: Tellus A 2016, 68, 30625, http://dx.doi.org/10.3402/tellusa.v68.30625

Share - Bookmark

Cite this article