LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Dorai , Martine; Papadopoulos , Athanasios; Gosselin , André (2001)
Publisher: EDP Sciences
Languages: English
Types: Article
Subjects: salinity, tomate, salinité, [ SDV.EE ] Life Sciences [q-bio]/Ecology, environment, greenhouse
---
Lycopersicon esculentum
, serre, tomato, conductivité électrique, electrical conductivity, [ SDV.SA ] Life Sciences [q-bio]/Agricultural sciences, qualité des fruits, fruit quality
International audience; The osmotic and ionic effects of the electrical conductivity (EC) of the nutrient solution and its interactions with climatic factors and cultural practices on tomato yield and fruit quality are reviewed. Adjusting the salinity of the nutrient solution allows growers to modify water availability to the crop and hence improve fruit quality. At some point, however, increases in salinity limit marketable yield. Under high ECs, fruit size is inversely related to EC while the dry matter content of the fruit is linearly increased by the EC. The exact rate of yield decline varies with interactions between cultivars, environmental factors, composition of the nutrient solution, and crop management. According to different studies and growth conditions, salinities higher than 2.3-5.1 mS$\cdot$cm$^{-1}$ result in an undesirable yield reduction, while ECs of 3.5-9.0 mS$\cdot$cm$^{-1}$ improve tomato fruit quality. Manipulating the indoor climate such as humidity, temperature and ambient CO$_2$ level may offset the negative effect of high salinity on yield and fruit quality such as blossom-end rot. The light intensity received by the plant directly affects the quantity of photoassimilates available to the fruit, it also increases their sugar: acid ratio, and influences the transpiration rate and the water uptake by the plant, which in turn, affect the EC around the root. Increasing the EC with NaCl reduces titratable acids, potassium and nitrogen in the fruit but also increases their sodium content. NaCl enhances the sweetness of tomato fruit and improves the overall flavour intensity. Depending upon the composition of the saline solution, ion toxicities or nutritional deficiencies may arise because of a predominance of specific ion or competition effects among cations and anions. Keeping the proper nutrient levels and ratios between all the nutrients in the root environment for each growth stage of a crop should be targeted in order to achieve high yields and high quality products throughout the cropping season. Several EC and fertigation management regimes could improve fruit quality and are presented in this review.; Influence de la régie de la conductivité électrique de la solution nutritive sur le rendement et la qualité de la tomate de serre. Cette revue de littérature porte sur les effets osmotiques et ioniques de la conductivité électrique (CE) de la solution nutritive et de ses liens avec les facteurs climatiques et culturaux sur le rendement et la qualité de la tomate de serre. L'ajustement de la salinité de la solution nutritive permet aux producteurs de modifier la disponibilité en eau pour la plante de façon à contrôler la qualité des fruits. Cependant, des salinités élevées affectent le rendement vendable. Sous une haute CE, le calibre des fruits est inversement relié à la CE alors que le contenu en matière sèche des fruits augmente linéairement avec la CE. Le taux de réduction du rendement varie selon les interactions entre la CE et les cultivars, les facteurs environnementaux, la composition de la solution nutritive, et la gestion de la culture. Selon différentes études et conditions de croissance des plants, une CE plus élevée que 2.3-5.1 mS$\cdot$cm$^{-1}$ entraîne une baisse de rendement alors qu'une salinité de 3.5-9.0 mS$\cdot$cm$^{-1}$ améliore la qualité des fruits. La manipulation du climat de la serre (humidité relative, température, niveau de CO$_2$ ambiant) peuvent compenser les effets négatifs engendrés par de hautes salinités sur le rendement et la qualité des fruits. L'intensité lumineuse reçue par la plante affecte directement la quantité de photoassimilats disponibles pour les fruits, accroît leur rapport sucre : acide, influence les taux de transpiration et d'absorption de l'eau par les plants, lesquels influencent la CE de la zone radiculaire. L'accroissement de la salinité par l'ajout de NaCl réduit le contenu en acides titrables, en potassium et en azote des fruits et augmente leur contenu en sodium. Le NaCl accroît la qualité gustative des fruits et la perception d'une saveur plus sucrée. Selon la composition de la solution nutritive, des déficiences ou toxicités nutritionnelles peuvent survenir suite à une prédominance d'ions spécifiques ou à une compétition parmi les cations et les anions. De façon à obtenir des rendements élevés de très grande qualité tout au long de la saison de production, un équilibre entre les éléments nutritifs de la rhizosphère doit être préservé pour chacun des stades de croissance. Cet article présente plusieurs stratégies de gestion de la CE afin d'améliorer la qualité de la tomate de serre.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] Abbott J.D., Peet M.M., Willits D.H., Gough R.E., Water management of greenhouse tomatoes, HortScience 20 (1985) 688-690.
    • [2] Abbott J.D., Peet M.M., Willits D.H., Sanders D.C., Gough R.E., Effects of irrigation frequency and scheduling on fruit production and radial fruit cracking in greenhouse tomatoes in soil beds and in soil-less medium in bags, Sci. Hortic. 28 (1986) 209-217.
    • [3] Adams F., Ionic concentrations and activities in soil solutions, Soil Sci. Soc. Am. Proc. 35 (1971) 420-436.
    • [4] Adams P., The test of raised salinity, The Grower (Suppl.) 107 (1987) 23-27.
    • [5] Adams P., Some responses of tomatoes grown in NFT to sodium chloride, Proc. 7th Int. Congr. on Soilless Culture, Flevoh, ISOSC, Wageningen, The Netherlands, 1989, pp. 59-71.
    • [6] Adams P., Effects of watering on the yield, quality and composition of tomatoes grown in bags of peat, J. Hortic. Sci. 65 (1990) 667-674.
    • [7] Adams P., Effects of increasing the salinity of the nutrient solution with major nutrients or sodium chloride on the yield, quality and composition of tomatoes grown in rockwool, J. Hortic. Sci. 66 (1991) 201-207.
    • [8] Adams P., Plant nutrition demystified, Acta Hort. 481 (1999) 341-344.
    • [9] Adams P., El-Gizawy A.M., Effect of salinity and watering level on the calcium content of tomato fruit, Acta Hort. 190 (1986) 253-259.
    • [10] Adams P., Ho L.C., Effects of constant and fluctuating salinity on the yield, quality and calcium status of tomatoes, J. Hortic. Sci. 64 (1989) 725-732.
    • [11] Adams P., Ho L.C., Effect of salinity on calcium transport in tomato, in: Van Beusichem M.L. (Ed.), Plant nutrition: physiology and applications, 1990, pp. 469-472.
    • [12] Adams P., Ho L.C., The susceptibility of modern tomato cultivars to blossom-end rot in relation to salinity, J. Hortic. Sci. 67 (1992) 827-839.
    • [13] Adams P., Ho L.C., Differential effects of salinity and humidity on growth and Ca status of tomato and cucumber grown in hydroponic culture, Acta Hort. 401 (1995) 357-363.
    • [14] Adams P., Ho L.C., Uptake and distribution of nutrients in relation to tomato fruit quality, Acta Hort. 412 (1995) 374-387.
    • [30] Chen Z., Miller A.R., Steroid alkaloids in Solanaceous vegetable crops: Chemistry, biochemistry, distribution, horticulture and toxicology, Hortic. Rev. 25 (2001) in press.
    • [31] Cho J.Y., Lee B.S., Park S.G., Chung S.J., Effect of NaCl in nutrient solution during seedling stage and after transplanting on the fruit quality of aeroponically grown tomato plants, Lycopersicon esculentum L., Proc. 7th ISHS Symp. on Vegetable Quality, Seoul, Korea, 1997, pp. 240-244.
    • [32] Chrétien S., Gosselin A., Dorais M., High electrical conductivity and radiation-based water management improve fruit quality of greenhouse tomatoes grown in rockwool, HortScience 35 (2000) 627-631.
    • [33] Clarkson D.T., Hanson J.B., The mineral nutrition of higher plants, Annu. Rev. Plant Physiol. 31 (1980) 239-298.
    • [34] Clinton L.S.K., Lycopene: chemistry, biology, and implications for human health and disease, Nutr. Rev. 56 (1998) 35-51.
    • [35] Cornish P.S., Use of high electrical conductivity of nutrient solution to improve the quality of salad tomatoes (Lycopersicon esculentum) grown in hydroponic culture, Aust. J. Exp. Agric. 32 (1992) 513-520.
    • [36] Cortés C., Ayuso M.C., Palomares G., Cuartero J., Nuez F., Relationship between radial and concentric cracking of tomato fruit, Sci. Hortic. 21 (1983) 323-328.
    • [37] Cram W.J., Chloride accumulation as a homeostatic system: set points and perturbation, J. Exp. Bot. 34 (1983) 1484-1502.
    • [38] Cramer M.D., Lips S.H., Enriched rhizosphere CO2 concentrations can ameliorate the influence of salinity on hydroponically grown tomato plants, Physiol. Plant. 94 (1995) 425-432.
    • [39] Cramer M.D., Richards M.B., The effect of rhizosphere dissolved inorganic carbon on gas exchange characteristics and growth rates of tomato seedlings, J. Exp. Bot. 50 (1999) 79-87.
    • [40] Cramer M.D., Schierholt A., Wang Y.Z., Lips S.H., The influence of salinity on the utilization of root anaplerotic carbon and nitrogen metabolism in tomato seedlings, J. Exp. Bot. 46 (1995) 1569-1577.
    • [41] Cramer M.D., Savidov N., Lips S.H., The influence of enriched rhizosphere CO2 concentrations on N uptake and metabolism in NR-deficient and wild-type barley, Physiol. Plant. 97 (1996) 47-54.
    • [42] Cruz V., Tolerancia a la salinidad y criterios de selection en Lycopersicon Mill. spp., Ph.D. thesis, Universidad de Malaga, 1990, p. 484.
    • [43] Cuartero J., Soria T., Productividad de tomates cultivados en conditions salinas, Actas de Hortic. 16 (1997) 214-221.
    • [44] Cuartero J., Fernandez-Munoz R., Tomato and salinity, Sci. Hortic. 78 (1999) 83-125.
    • [45] Davies J.N., Effect of nitrogen, phosphorus and potassium fertilizers on the non-volatile organic acids of tomato fruit, J. Agric. Food Chem. 10 (1964) 665-673.
    • [46] Davies J.N., Hobson G.E., The constituents of tomato fruit - the influence of environment, nutrition, and genotype, Crit. Rev. Food Sci. Nutr. 15 (1981) 205-280.
    • [47] De Koning A.N.M., Modelling development and dry matter distribution of tomato, Annu. Rep. Glasshouse Crops Research Station, Naaldwijk, The Netherlands, 1992, p. 34.
    • [48] De Kreij C., Blossom-end rot, Compte rendu de la réunion du 25 février, Cultilène, division d'Isover, St-Gobain, France, 1992.
    • [49] De Kreij C., Latest insights into water and nutrient control in soilless cultivation, Acta Hort. 408 (1995) 47-61.
    • [50] De Kreij C., Voogt W., Van Den Bos A.L., Baas R., Voedingsoplossingen voor de teelt van tomaat in gesloten teeltsystemen, Proefstation voor Bloemisterij en Glasgroente, Naaldwij, The Netherlands, VG2, 1997.
    • [51] Dorais M., Papadopoulos A.P., Ehret D.L., Turcotte G., Gosselin A., Can tomato fruit quality and flavor be controlled by EC and water management? International Society of Horticultural Science, Hydroponics and Growing Media Symposium, Halkidiki, Greece, August 31 to September 6, 1999, p. 76.
    • [52] Dorais M., Dorval R., Demers D.A., Micevic D., Turcotte G., Hao X., Papadopoulos A.P., Ehret D.L., Gosselin A., Improving tomato fruit quality by increasing salinity: effects on ion uptake, growth and yield, XXV International Horticultural Congress, Brussels August 2-7, 1998, Acta Hort. 511( 2000) 185-196.
    • [53] Dorais M., Papadopoulos A.P., Turcotte G., Hao X., Ehret D.L., Gosselin A., Control of tomato fruit quality and flavour by EC and water management, Greenhouse and Processing Crops Research Centre Annual Report, Harrow, ON, Canada, 2000, pp. 18-21.
    • [54] Drake B.D., Gonzalez-Meler M.A., Long S.P., More efficient plants: consequences of rising atmospheric CO2? Annu. Rev. Plant Physiol. 48 (1997) 609-639.
    • [55] Ehret D.L., Ho L.C., Effects of osmotic potential in nutrient solution on diurnal growth of tomato fruit, J. Exp. Bot. 37 (1986) 1294-1302.
    • [56] Ehret D.L., Ho L.C., Translocation of calcium in relation to tomato fruit growth, Ann. Bot. 58 (1986) 679-688.
    • [57] Ehret D.L., Ho L.C., The effect of salinity on dry matter partitioning and fruit growth in tomatoes grown in nutrient film culture, J. Hortic. Sci. 61 (1986) 361-367.
    • [58] El-Sherif A.F., Shata S.M., Youssef R.A., Response of tomato seedlings to zinc application under different salinity levels I. Dry matter, Ca, Mg, K and Na content, Egypt J. Hortic. 17 (1990) 131-142.
    • [59] Enoch H.Z., Olesen J.M., Plant response to irrigation with water enriched with carbon dioxide, New Phytol. 125 (1993) 249-258.
    • [60] Epstein E., Mineral nutrition of plants; principles and perspectives, Wiley, New York, 1972.
    • [61] Evans H.J., Sorger G., Role of mineral elements with emphasis on the univalent cations, Annu. Rev. Plant Physiol. 17 (1966) 47-76.
    • [62] Ferreyra R., Aljaro A., Ruiz R., Rojas L., Oster J.D., Behavior of 42 crop species grown in saline soils with high boron concentrations, Agric. Water Manage. 34 (1997) 111-124.
    • [63] Franscis A.R., Shetty T.K., Bhattacharya R.K., Modifying role of dietary factors on the mutagenicity of aflatoxin B1: in vitro effect of plant falvonoids, Mutat. Res. 222 (1989) 393-401.
    • [64] Frota J.N.E., Tucker T.C., Absortion rates of ammonium nitrate by red kidney beans under salt and water stress, Soil Sci. Soc. Am. J. 42 (1978) 753-756.
    • [65] Frydrych J., Factors affecting photosynthetic productivity of sweet pepper and tomatoes grown in CO2-enriched atmosphere, Acta Hort. 162 (1984) 271-278.
    • [66] Gao Z., Sagi M., Lips H., Assimilate allocation priority as affected by nitrogen compounds in the xylem sap of tomato, Plant Physiol. Biochem. 34 (1996) 807-815.
    • [67] Gao Z., Sagi M., Lips S.H., Carbohydrate metabolism in leaves and assimilate partitioning in fruits of tomato (Lycopersicon esculentum L.) as affected by salinity, Plant Sci. 135 (1998) 149-159.
    • [68] Gerster H., The potential role of lycopene for human health: Review article, J. Am. Coll. Nutr. 16 (1997) 109-126.
    • [69] Giovannucci E., Tomatoes, tomato-based products, lycopene, and cancer: review of the epidemiologic literature, J. Nat. Cancer Inst. 91 (1999) 317-331.
    • [70] Gonzalez-Fernandez J.J., Cuartero J., Fructificacion en dos especies de Lycopersicon cultivadas con sal, Actas de Hortic. 9 (1994) 41-47.
    • [71] Gormley T.R., Maher M.J., Tomato fruit quality: an interdisciplinary approach, Prof. Hortic. 4 (1990) 107-112.
    • [72] Gosselin A., Trudel M.J., Interactions between air and root temperatures on greenhouse tomato: II. Mineral composition of plants, J. Am. Soc. Hortic. Sci. 108 (1983) 905-909.
    • [73] Gough C., Hobson G.E., A comparison of the productivity, quality, shelf-life characteristics and consumer reaction to the crop from cherry tomato plants grown at different levels of salinity, J. Hortic. Sci. 65 (1990) 431-439.
    • [74] Grange R.L., Hand D.W., A review of the effects of atmospheric humidity on the growth of horticultural crops, J. Hortic. Sci. 62 (1987) 125-134.
    • [75] Grattan S.R., Grieve C.M., Salinity-mineral nutrient relations in horticultural crops, Sci. Hortic. 78 (1999) 127-157.
    • [76] Grierson D., Kader A.A., Fruit ripening and quality, in: Atherton J.G., Rudich J. (Eds.), The tomato crop: A scientific basis for improvement, Chapman and Hall, London, 1986, pp. 241-280.
    • [77] Grolier P., Rock E., The composition of tomato in antioxydants: variations and methodology, Proc. Tomato and Health Seminar. Pamplona, Spain, 25-28 May, 1998, pp. 87-94.
    • [78] Grunberg K., Fernandez-Munoz R., Cuartero J., Growth, flowering, and quality and quantity of pollen of tomato plants grown under saline conditions, Acta Hort. 412 (1995) 484-489.
    • [79] Gupta U.C., Jame Y.W., Campbell C.A., Leyshon A.J., Nicholaichuk W., Boron toxicity and deficiency: a review, Can. J. Soil Sci. 65 (1985) 381-409.
    • [80] Hao X., Papadopoulos A.P., Dorais M., Ehret D.E., Turcotte G., Gosselin A., Improving tomato fruit quality by
    • [85] Ho L.C., Tomato, in: Zamski E., Schaffer A.A. (Eds.), Photoassimilate distribution in plants and crops: Source-sink relationships, Marcel Dekker, Inc., 1996, pp. 709-728.
    • [86] Ho L.C., The physiological basis for improving tomato fruit quality, Acta Hort. 487 (1999) 33-40.
    • [87] Ho L.C., Adams P., Effects of diurnal changes in the salinity of the nutrient solution on the accumulation of calcium by tomato fruit, Ann. Bot. 64 (1989) 373-382.
    • [88] Ho L.C., Adams P., The physiological basis for high fruit yield and susceptibility to calcium deficiency in tomato and cucumber, J. Hort. Sci. 69 (1994) 367-376.
    • [89] Ho L.C., Adams P., Nutrient uptake and distribution in relation to crop quality, Acta Hort. 396 (1995) 33-44.
    • [90] Ho L.C., Grange R.I., Picken A.J., An analysis of the accumulation of water and dry matter in tomato fruit, Plant Cell Environ. 10 (1987) 157-162.
    • [91] Ho L.C., Hand D.J., Fussell M., Improvement of tomato fruit quality by calcium nutrition, Acta Hort. 481 (1999) 463-468.
    • [92] Ho L.C., Belda R., Brown M., Andrews J., Adams P., Uptake and transport of calcium and the possible causes of blossom-end rot in tomato, J. Exp. Bot. 44 (1993) 509-518.
    • [93] Ho L.C., Adams P., Li X.Z., Shen H., Andrew J., Xu Z.H., Response of Ca-efficient and Ca-inefficient tomato cultivars to salinity in plant growth, calcium accumulation and blossom-end rot, J. Hortic. Sci. 70 (1995) 909-918.
    • [94] Hobson G.E., Pre- and post-harvest strategies in the production of high quality tomato fruit, Appl. Agric. Res. 3 (1988) 282-287.
    • [95] Hohjo M., Kuwata C., Yoshikawa K., Ito T., Effects of nitrogen form, nutrient concentration and Ca concentration on the growth, yield and fruit quality in NFT-tomato plants, Acta Hort. 396 (1995) 145-152.
    • [96] Holder R., Christensen M.H., The effects of electrical conductivity on the growth, yield and composition of cherry tomatoes grown on rockwool, Proc. 7th Int. Congress on Soilless Culture. ISOSC, Wageningen, Flevohof, 1989, pp. 213-228.
    • [97] Hsiao T.C., Lauchli A., Role of potassium in plantwater relations, Adv. Plant Nutr. 2 (1986) 281-312.
    • [98] Jackson W.A., Volk R.J., Role of potassium in photosynthesis and respiration, in: The role of potassium in agriculture, Am. Soc. Agric. Madison, WS, 1968, pp. 109-188.
    • [99] Janse J., Invloed van licht op de kwaliteit van tomaat en komkommer, Groenten en fruit 40 (1984) 28-31.
    • [100] Janse J., Goudspikkels bij tomaat; een oplosbaar probleem, Groenten en Fruit 43 (1988) 30-31.
    • [101] Janse J., Flavour of tomatoes, in: XXX. Vortragstagung der Deutschen Gesellschaft für Qualitätsforschung, Heilbronn, Deutschland, 27-28 März, 1995, pp. 179-194.
    • [102] Jobin-Lawler F., Dorais M., Simard K., Papadopoulos A.P., Gosselin A., Effects of solar radiation and boron fruit application on cuticle cracking of greenhouse tomato grown under artificial lighting, 4th International ISHS Symposium on Artificial Lighting, Quebec city, Canada, November 7-9, 2000, p. 49.
    • [103] Johnson R.W., Dixon M.A., Lee D.R., Water relations of the tomato fruit during growth, Plant Cell Environ. 15 (1992) 947-953.
    • [104] Jones J.B. Jr., Phosphorus toxicity in tomato plants: when and how does it occur? Commun. Soil Sci. Plant Anal. 29 (1998) 1779-1784.
    • [105] Kabu K.L., Toop E.W., Influence of soil temperature and potassium fertilization on magnesium content of tomato plants, Can. J. Plant Sci. 50 (1970) 740-742.
    • [106] Kader A.A., Effects of postharvest handling procedures on tomato quality, Acta Hort. 190 (1986) 209-221.
    • [107] Kläring H.-P., Schwarz D., Model-based control of concentration of nutrient solution in glasshouse tomato cultivation, Acta Hort. 507 (1999) 127-132.
    • [108] Kläring H.-P., Schwarz D., Heibner A., Control of nutrient solution concentration in tomato crop using models of photosynthesis and transpiration: A simulation study, Acta Hort. 450 (1997) 329-334.
    • [109] Kläring H.-P., Schwarz D., Cierpinski W., Control of concentration of nutrient solution in soilless growing systems, depending on greenhouse climate - Advantages and limitations, Acta Hort. 507 (1999) 133-139.
    • [110] Knight S.L., Rogers R.B., Smith M.A.L., Spomer L.A., Effects of NaCl salinity on miniature dwarf tomato “Micro-Tom”: I. Growth analyses and nutrient composition, J. Plant Nutr. 15 (1992) 2315-2327.
    • [111] Krinsky N.I., Effects of carotenoids in cellular and animal systems, Am. J. Clin. Nutr. 53 (1991) 238S-246S.
    • [112] Krinsky N.I., Anticarcinogenic activities of carotenoids in animals and cellular systems, in: Emers I., Chance B. (Eds.), Free Radicals and Aging, Verlag, Basel, 1992, pp. 227-234.
    • [113] Läuchli A., Responses and adaptations of crops to salinity, Acta Hort. 190 (1986) 243-246.
    • [114] Lea-Cox J.D., Syvertsen J.P., Salinity reduces water use and nitrate-N-use efficiency of citrus, Ann. Bot. 72 (1993) 47-54.
    • [115] LeBot J., Adamowicz S., Robin P., Gary C., Modelling nitrate uptake by greenhouse tomato crops at the short and long time scales, Acta Hort. 456 (1998) 237-245.
    • [116] Leigh R.A., Wyn Jones R.G., A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant cell, New Phytol. 97 (1984) 1-13.
    • [117] Li G.J., Xu Z.H., Dai D.L., Shou W.L., The effect of cultivars, electrical conductivity and harvest date on the storability of cherry tomato grown in soilless culture, Acta Agric. Zhejiangensis 11 (1999) 17-22.
    • [118] Li J.H., Gale J., Novoplansky A., Barak S., Volokita M., Response of tomato plants to saline water as affected by carbon dioxide supplementation. II. Physiological responses, J. Hortic. Sci. Biotechnol. 74 (1999) 238-242.
    • [119] Li J.H., Sagi M., Gale J., Volokita M., Novoplansky A., Response of tomato plants to saline water as affected by carbon dioxide supplementation. I. Growth, yield and fruit quality, J. Hortic. Sci. Biotechnol. 74 (1999) 232-237.
    • [120] Lin W.C., Glass A.D.M., The effects of NaCl addition and macronutrient concentration on fruit quality and flavor volatiles of greenhouse tomatoes, Acta Hort. 481 (1999) 487-493.
    • [121] Lopez J.B., Étude des effets des ions sulfates dans la solution nutritive sur la croissance, la physiologie, la nutrition minérale et la productivité de la tomate de serre, Thèse de doctorat, Univ. Laval, Québec, Canada, 1998.
    • [122] Lopez M.V., Satti S.M.E., Calcium and potassiumenhanced growth and yield of tomato under sodium chloride stress, Plant Sci. 114 (1996) 19-27.
    • [123] Maas E.V., Hoffman G.J., Crop salt tolerance: current assessment, J. of the Irrigation and Drainage Division, Am. Soc. Civil Eng. 103 (1977) 116-134.
    • [124] Maas E.V., Ogata G., Garber M.J., Influence of salinity on Fe, Mn, and Zn uptake by plants, Agron. J. 64 (1972) 793-795.
    • [125] Malundo T.M.M., Shewfelt R.L., Scott J.W., Flavor quality of fresh tomato (Lycopersicon esculentum Mill.) as affected by sugar and acid levels, Postharvest Biol. Technol. 6 (1995) 103-110.
    • [126] Marschner H., Mineral nutrition of higher plants, 2nd ed. Academic Press, London, 1995.
    • [127] Martinez V., Cerda A., Influence of N source on rate of Cl, N, Na, and K uptake by cucumber seedlings grown in saline conditions, J. Plant Nutr. 12 (1989) 971-983.
    • [128] Massey D.M., Hayward A.C., Winsor G.W., Some responses of tomatoes to salinity in nutrient film culture, in: Glasshouse Crops Res. Inst. Annu. Rep. 1984, pp. 60-62.
    • [129] McAvoy R.J., Fruit cracking in greenhouse tomatoes, Connecticut Greenhouse Newsletter 178 (1994) 21-28.
    • [130] McAvoy R., Don't let your tomatoes crack up - Here's how to prevent those unsighty and profit-robbing-cracks on fruit, Am. Veget. Grower, August, 1995, pp. 46-47.
    • [131] Minamide R.T., Ho L.C., Deposition of calcium compounds in tomato fruit in relation to calcium transport, J. Hortic. Sci. 68 (1993) 755-762.
    • [132] Mitchell J.P., Shennan C., Grattan S.R., May D.M., Tomato fruit yields and quality under water deficit and salinity, J. Am. Soc. Hortic. Sci. 116 (1991) 215-221.
    • [133] Mizrahi Y., Effect of salinity on tomato fruit ripening, Plant Physiol. 69 (1982) 966-970.
    • [134] Mizrahi Y., Arad S., Zohar R., Salinity as a possible means of improving fruit quality in slow-ripening tomato hybrids, Acta Hort. 190 (1986) 223.
    • [135] Mizrahi Y., Taleisnik E., Kagan-Zur V., Zohar Y., Offenbach R., Matan E., Golan R., A saline irrigation regime for improving tomato fruit quality without reducing yield, J. Am. Soc. Hortic. Sci. 113 (1988) 202-205.
    • [136] Nederhoff E.M., Effects of CO2 concentration on photosynthesis, transpiration and production of greenhouse fruit vegetable crops, Dissertation, Wageningen, The Netherlands, 1994.
    • [137] Nederhoff E., Effects of different day/night conductivities on blossom-end rot, quality and production of greenhouse tomatoes, Acta Hort. 481 (1999) 495-502.
    • [138] Ness A.R., Powles J.W., Fruit and vegetables, and cardiovascular disease: A review, Int. J. Epidemiol. 26 (1997) 1-13.
    • [139] Niazi B.H., Ahmed T., Effect of sodium chloride and zinc on the growth of tomato. II. Uptake of ions, Geobios 11 (1984) 155-160.
    • [140] Niedziela C.E. Jr., Nelson P.V., Willits D.H., Peet M.M., Short-term salt-shock effects on tomato fruit quality, yield, and vegetative prediction of subsequent fruit quality, J. Am. Soc. Hortic. Sci. 118 (1993) 12-16.
    • [141] Nonami H., Fukuyama T., Yamamoto M., Yang L., Hashimoto Y., Ito T., Tognoni F., Namiki T., Nukaya A., Maruo T., Blossom-end rot of tomato plants may not be directly caused by calcium deficiency, Acta Hort. 396 (1995) 107-114.
    • [142] Norrie J., Graham M.E.D., Gosselin A., Potential evapotranspiration as a means of predicting irrigation timing in greenhouse tomatoes grown in peatbags, J. Am. Soc. Hortic. Sci. 119 (1994) 163-168.
    • [143] Norrie J., Graham M.E.D., Charbonneau J., Gosselin A., Impact of irrigation management of greenhouse tomato: Yield, nutrition, and salinity of peat substrate, Can. J. Plant Sci. 75 (1995) 497-503.
    • [144] Nukaya A., Voogt W., Sonneveld C., Effects of NO3, SO4 and Cl ratios on tomatoes grown in recirculating system, Acta Hort. 294 (1991) 297-304.
    • [145] Nukaya A., Voogt W., Sonneveld C., Effects of NO3, SO4 and Cl ratios on tomatoes grown in recirculating system, Acta Hort. 303 (1992) 91-98.
    • [146] Nukaya A., Goto K., Jang H., Kano A., Ohkawa K., Effect of K-Ca ratio in the nutrient solution on the incidence of blossom-end rot and gold specks on tomato fruit grown in rockwool, Acta Hort. 396 (1995) 123-130.
    • [147] Nukaya A., Goto K., Jang H., Kano A., Ohkawa K., Effect of NH4-N level in the nutrient solution on the incidence of blossom-end rot and gold specks on tomato fruit grown in rockwool, Acta Hort. 401 (1995) 381-388.
    • [148] Pearce B.D., Grange R.I., Hardwick K., The growth of young tomato fruit. II. Environmental influences on glasshouse crops grown in rockwool or nutrient film, J. Hortic. Sci. 68 (1993) 13-23.
    • [149] Peet M.M., Fruit cracking in tomato, HortTechnology 2 (1992) 216-223.
    • [150] Peet M.M., Willits D.H., Role of excess water in tomato fruit cracking, HortScience 30 (1995) 65-68.
    • [151] Pérez-Alfocea F., Balibrea M.E., Santa Cruz A., Estan M.T., Agronomical and physiological characterization of salinity tolerance in a commercial tomato hybrid, Plant and Soil 180 (1996) 251-257.
    • [152] Pessarakli M., Tucker T.C., Uptake of nitrogen-15 by cotton under salt stress, Soil Sci. Soc. Am. J. 49 (1985) 149-152.
    • [153] Pessarakli M., Tucker T.C., Dry matter yield and nitrogen-15 uptake by tomatoes under sodium chloride stress, Soil Sci. Soc. Am. J. 52 (1988) 698-700.
    • [154] Petersen K.K, Willumsen J., Kaack K., Composition and taste of tomatoes as affected by increased salinity and different salinity sources, J. Hortic. Sci. Biotechnol. 73 (1998) 205-215.
    • [155] Petro-Turza M., Flavor of tomato and tomato products, Food Rev. Int. 2 (1986) 309-351.
    • [156] Phatak S.C., Wittwer S.H., Teubner F.G., Top and root temperature effects on tomato flowering, Proc. Am. Soc. Hortic. Sci. 88 (1966) 527-531.
    • [157] Pivot D., Reist A., Gillioz J.-M., Water quality, climatic environment and mineral nutrition of tomato (Lycopersicon esculentum) in closed soilless cropping system, Acta Hort. 458 (1997) 207-214.
    • [158] Rodriguez P., Dell'Amico J., Morales D., SanchezBlanco M.J., Alarcon J.J., Effects of salinity on growth, shoot water relations and root hydraulic conductivity in tomato plants, J. Agric. Sci. 128 (1997) 413-444.
    • [159] Sandoval-Villa M., Wood C.W., Guertal E.A., Effects of nitrogen form, nighttime nutrient solution strenght, and cultivar on greenhouse tomato production, J. Plant Nutr. 22 (1999) 1931-1945.
    • [160] Scholberg J.M.S., Locascio S.J., Growth response of snap bean and tomato as affected by salinity and irrigation method, HortScience 34 (1999) 259-264.
    • [161] Schwarz M., Gale J., Growth responses to salinity at high levels of carbon dioxide, J. Exp. Bot. 35 (1984) 193-196.
    • [162] Shalhevet J., Maas E.V., Hoffman G.J., Ogata G., Salinity and hydraulic conductance of roots, Physiol. Plant. 38 (1976) 224-232.
    • [163] Shannon M.C., Grieve C.M., Tolerance of vegetable crops to salinity, Sci. Hortic. 78 (1999) 5-38.
    • [164] Shi Z.-Q., Turcotte G., Gosselin A., Papadopoulos A.P., Dorais M., Effects of different EC management on yield, quality and nutraceutical properties of tomato grown in rock-
    • [167] Sonneveld C., The salt tolerance of greenhouse crops, Neth. J. Agric. Sci. 36 (1988) 63-73.
    • [168] Sonneveld C., Welles G.W.H., Yield and quality of rockwool-grown tomatoes as affected by variations in ECvalue and climatic conditions, Plant and Soil 111 (1988) 37-42.
    • [169] Sonneveld C., Van Der Burg A.M.M., Sodium chloride salinity in fruit vegetable crops in soilless culture, Neth. J. Agric. Sci. 39 (1991) 115-122.
    • [170] Soria T., Cuartero J., Tomato fruit yield and water consumption with salty water irrigation, Acta Hort. 458 (1997) 215-219.
    • [171] Stanghellini C., van Meurs W.Th.M., Corver F., Van Dullemen E., Simonse L., Combined effect of climate and concentration of the nutrient solution on a greenhouse tomato crop. II: Yield quantity and quality, Acta Hort. 458 (1998) 231-237.
    • [172] Steinmetz K.A., Potter J.D., Vegetables, fruits and cancer prevention: A review, J. Am. Diet Assoc. 96 (1996) 1027-1039.
    • [173] Stevens M.A., Tomato quality: potential for developing cultivars with improved flavor, Acta Hort. 93 (1979) 317-329.
    • [174] Stevens M.A., Inheritance of tomato fruit quality components, Plant Breed. Rev. 4 (1986) 273-311.
    • [175] Stevens M.A., Rick C.M., Genetics and breeding, in: Atherton J.G., Rudich J. (Eds.), The tomato crop. A scientific basis for improvement, Chapman and Hall, London, 1986, pp. 35-109.
    • [176] Suhayda C.G., Giannini J.L., Briskin D.P., Shannon M.C., Elestrostatic changes in Lycopersicon esculentum root plasma membrane resulting from salt stress, Plant Physiol. 93 (1990) 471-478.
    • [177] Tüzel Y., Ul M.A., Tuzel I.H., Cockshull K.E., Gul A., Effects of different irrigation intervals and rates on spring season glasshouse tomato production: II. Fruit quality, 2nd Symp. Protected Cultivation of Solanacea in mild winter climates, Adana, Turkey 366 (1993) 389-396.
    • [178] Van Gnuchten M.T., Analyzing crop salt tolerance data: model description and user's manual. Research report 120. USDA Agr. Res. Ser., US Salinity Laboratory, Riverside, CA, 1983, p. 50.
    • [179] Van Ieperen W., Effects of different day and night salinity levels on vegetative growth, yield and quality of tomato, J. Hortic. Sci. 71 (1996) 99-111.
    • [180] Verkerke W., Schols M., The influence of EC level and specific nutrients on the firmness, taste and yield of tomato, Glasshouse Crops Res. Stat., Naaldwijk, 1992, p. 37.
    • [181] Verkerke W., Gielesen C.J.M., Engelaan-Hokken L.T., Development of fruit firmness during growth period, Glasshouse Crops Res. Stat., Naaldwijk, 1991, p. 35.
    • [182] Verma A.K., Johnson J.A., Gould M.N., Tanner M.A., Inhibition of 7,12-dimethylbenz(a)anthracene and Nnitrosomethylurea induced rat mammary cancer by dietary flavonol quercetin, Cancer Res. 48 (1988) 5754-5788.
    • [183] Vonk Noordegraaf C., Welles G.W.H., Product quality, in: Bakker J.C., Bot G.P.A., Challa H., Van de Braak N.J. (Eds.), Greenhouse climate control; an integrated approach, Wageningen Pers. Wageningen, The Netherlands, 1995, pp. 92-97.
    • [184] Voogt W., Onderzoek naar de interacties bij de opname van voedingselementen, Glasshouse Crops Res. Stat., Naaldwijk, 1987, pp. 38-39.
    • [185] Voogt W., The growth of beefsteak tomato as affected by K/Ca ratios in the nutrient solution, Acta Hort. 222 (1987) 155-165.
    • [186] Voogt W., NO3/Cl ratios with beefsteak tomatoes, Glasshouse Crops Res. Stat., Naaldwijk, 1992, p. 14.
    • [187] Voogt W., Nutrient uptake of year round tomato crops, Acta Hort. 339 (1993) 99-112.
    • [188] Voogt W., Sonneveld C., Nutrient management in closed growing systems for greenhouse production, in: Goto E. (Ed.), Plant production in closed ecosystems, Kluwer Academic Publishers, 1997, pp. 83-102.
    • [189] Welles G.W.H., Janse J., Peron J.Y., L'influence des techniques modernes de production et des variétés sur la qualité analytique des légumes de serre, PHM Rev. Hortic. 324 (1992) 43-54.
    • [190] Willumsen J., Petersen K.K., Kaack K., Yield and blossom-end rot of tomato as affected by salinity and cation activity ratios in the root zone, J. Hortic. Sci. 71 (1996) 81-98.
    • [191] Winsor G.W., Baker A.M.A., Effects of nutrition on the composition and quality of field-grown tomatoes, Annu. Rep. Glasshouse Crops Research Institute, 1982, pp. 68-71.
    • [192] Xu H.L., Gauthier L., Gosselin A., Responses of the photosynthetic rate to photon flux density in tomato plants affected by high electrical conductivity of nutrient solution and low water content in substrate, Photosynthetica 30 (1994) 279-286.
    • [193] Xu H.L., Gauthier L., Gosselin A., Effects of fertigation management on photosynthesis in tomato plants grown in peat, rockwool and NFT, Sci. Hortic. 63 (1995) 11-12.
    • [194] Xu H.L., Gauthier L., Gosselin A., Greenhouse tomato photosynthetic acclimation to water deficit and response to salt accumulation in the substrate, J. Jap. Soc. Hortic. Sci. 65 (1997) 777-784.
    • [195] Xu H.L., Wang R., Gauthier L., Gosselin A., Tomato leaf photosynthetic responses to humidity and temperature under salinity and water deficit, Pedosphere 9 (1999) 105-112.
    • [196] Yelle S., Gosselin A., Trudel M.-J., Effets à long terme de l'enrichissement carboné sur la tomate de serre cultivée avec ou sans éclairage d'appoint, Can J. Plant Sci. 67 (1987) 899-907.
    • [197] Yelle S., Beeson R.C., Trudel M.-J., Gosselin A., Duration of CO2 enrichment influences growth, yield, and gas exchange of two tomato species, J. Am. Soc. Hortic. Sci. 115 (1990) 52-57.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article