Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Fliess, Michel; Join, Cédric; Sira-Ramirez, Hebertt (2007)
Publisher: Inderscience Enterprises Ltd.
Languages: English
Types: Article
Subjects: [MATH.MATH-AC] Mathematics [math]/Commutative Algebra [math.AC], [MATH.MATH-NA] Mathematics [math]/Numerical Analysis [math.NA], parametric identifiability, closed-loop fault tolerant control, Mathematics - Commutative Algebra, [INFO.INFO-CE] Computer Science [cs]/Computational Engineering, Finance, and Science [cs.CE], [MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC], [INFO.INFO-PF] Computer Science [cs]/Performance [cs.PF], closed-loop state estimation, closed-loop parametric identification, differential algebra., Non-linear systems, numerical differentiation, [INFO.INFO-AU] Computer Science [cs]/Automatic Control Engineering, Mathematics - Optimization and Control, Computer Science - Performance, Computer Science - Numerical Analysis, Computer Science - Computational Engineering, Finance, and Science, closed-loop perturbation attenuation, closed-loop fault diagnosis, differential algebra, observability, Mathematics - Numerical Analysis
International audience; Non-linear state estimation and some related topics, like parametric estimation, fault diagnosis, and perturbation attenuation, are tackled here via a new methodology in numerical differentiation. The corresponding basic system theoretic definitions and properties are presented within the framework of differential algebra, which permits to handle system variables and their derivatives of any order. Several academic examples and their computer simulations, with on-line estimations, are illustrating our viewpoint.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Astr¨om, K.J., Albertos, P., Blanke, M., Isidori, A., Schaufelberger, W., and Sanz, R. (2001) Control of Complex Systems, Springer.
    • Atiyah, M.F., and Macdonald, I.G. (1969) Introduction to Commutative Algebra, Addison-Wesley.
    • Barbot, J.P., Fliess, M., and Floquet, T. (2007) 'An algebraic framework for the design of nonlinear observers with unknown inputs', Proc. 46th IEEE Conf. Decision Control, New Orleans (available at http://hal.inria.fr/inria-00172366).
    • Blanke, M., Kinnaert, M., Lunze, J., and Staroswiecki, M. (2003) Diagnosis and Fault-Tolerant Control, Springer.
    • Bourl`es, H. (2006) Syst`emes lin´eaires : de la mod´elisation a` la commande, Herm`es.
    • Braci, M., and Diop, S. (2001) 'On numerical differentiation algorithms for nonlinear estimation', Proc. 42nd IEEE Conf. Decision Control, Maui, Hawaii.
    • Busvelle, E., and Gauthier, J.P. (2003) 'On determining unknown functions in differential systems, with an application to biological reactors', ESAIM Control Optimis. Calculus Variat., Vol. 9, pp. 509-552.
    • Chambert-Loir, A. (2005) Alg`ebre corporelle, E´ditions E´cole Polytechnique. English translation (2005): A Field Guide to Algebra, Springer.
    • Chen, J., and Patton, R. (1999). Robust Model-Based Fault Diagnosis for Dynamic Systems, Kluwer.
    • Chetverikov, V.N. (2004) 'A nonlinear Spencer complex for the group of invertible differential operators and its applications', Acta Appl. Math., Vol. 83, pp. 1-23.
    • Chitour, Y. (2002) 'Time-varying high-gain observers for numerical differentiation', IEEE Trans. Automat. Control, Vol. 47, pp. 1565-1569.
    • Conte, G., Moog, C.H., and Perdon, A.M. (1999) Nonlinear Control Systems - An Algebraic Setting, Lect. Notes Control Informat. Sci., Vol. 242, Springer.
    • Dabroom, A.M., and Khalil, H.K. (1999) 'Discrete-time implementation of high-gain observers for numerical differentiation', Int. J. Control, Vol. 72, pp. 1523-1537.
    • Delaleau, E. (2002) 'Alg`ebre diff´erentielle', in J.P. Richard (Ed.): Math´ematiques pour les Syst`emes Dynamiques, Vol. 2, chap. 6, pp. 245-268, Herm`es.
    • nard, J.P. Gauthier, and F. Monroy-Perez (Eds.): Contemporary Trends in Nonlinear Geometric Control Theory and its Applications, pp. 305-345, World Scientific.
    • Delaleau, E., and Pereira da Silva, P.S. (1998a) 'Filtrations in feedback synthesis: Part I - systems and feedbacks', Forum Math., Vol. 10, pp. 147-174.
    • Delaleau, E., and Pereira da Silva, P.S. (1998b) 'Filtrations in feedback synthesis - Part II: input-output decoupling and disturbance decoupling', Forum Math., Vol. 10, pp. 259-276.
    • Delaleau, E., and Respondek, W. (1995) 'Lowering the orders of derivatives of control in generalized state space systems' J. Math. Systems Estim. Control, Vol. 5, pp. 1-27.
    • Delaleau, E., and Rudolph, J. (1998) 'Control of flat systems by quasi-static feedback of generalized states', Int. J. Control, Vol. 71, pp. 745-765.
    • Diop, S. (1991) 'Elimination in control theory', Math. Control Signals Systems, Vol. 4, pp. 17-32.
    • Diop, S. (1992) 'Differential algebraic decision methods, and some applications to system theory', Theoret. Comput. Sci., Vol. 98, pp. 137-161
    • Diop, S. (2002) 'From the geometry to the algebra of nonlinear observability', in A. Anzaldo-Meneses, B. Bon-
    • Diop, S., and Fliess, M. (1991a) 'On nonlinear observability', Proc. 1st Europ. Control Conf., Herm`es, pp. 152- 157.
    • Diop S., and Fliess, M. (1991b) 'Nonlinear observability, identifiability and persistent trajectories', Proc. 36th IEEE Conf. Decision Control, Brighton, pp. 714-719.
    • Diop, S., Fromion, V., and Grizzle, J.W. (2001) 'A global exponential observer based on numerical differentiation', Proc. 40th IEEE Conf. Decision Control, Orlando.
    • Diop, S., Grizzle, J.W., and Chaplais, F. (2000) 'On numerical differentiation for nonlinear estimation', Proc. 39th IEEE Conf. Decision Control, Sidney.
    • Diop, S., Grizzle, J.W., Moraal, P.E., and Stefanopoulou, A. (1994) 'Interpolation and numerical differentiation for observer design', Proc. Amer. Control Conf., Baltimore, pp. 1329-1333.
    • Duncan, T.E., Mandl, P., and Pasik-Duncan, B. (1996) 'Numerical differentiation and parameter estimation in higher-order linear stochastic systems', IEEE Trans. Automat. Control, Vol. 41, pp. 522-532.
    • Eisenbud, D. (1995) Commutative Algebra with a View Toward Algebraic Geometry, Springer.
    • Fan, X., and Arcak, M. (2003) 'Observer design for systems with multivariable monotone nonlinearities', Systems Control Lett., Vol. 50, pp. 319-330.
    • Fliess, M. (1989) 'Automatique et corps diff´erentiels', Forum Math., Vol. 1, pp. 227-238.
    • Fliess, M. (1990) 'Controller canonical forms for linear and nonlinear dynamics', IEEE Trans. Automat. Control, Vol. 33, pp. 994-1001.
    • Fliess, M. (1994) 'Une intepr´etation alg´ebrique de la transformation de Laplace et des matrices de transfert', Linear Algebra Appl., Vol. 203-204, pp. 429-442.
    • Fliess, M. (2000) 'Variations sur la notion de contrˆolabilit´e', Journ´ee Soc. Math. France, Paris (available at http://hal.inria.fr/inria-00001042).
    • Fliess, M., L´evine, J., Martin, P., and Rouchon, P. (1995) 'Flatness and defect of non-linear systems: introductory theory and examples', Int. J. Control, Vol. 61, pp. 1327- 1361.
    • Fliess, M., L´evine, J., Martin, P., and Rouchon, P. (1997) 'Deux applications de la g´eometrie locale des diffi´et´es', Ann. Inst. H. Poincar´e Phys., Vol. 66, pp. 275-292.
    • Fliess, M., L´evine, J., Martin, P., and Rouchon, P. (1999) 'A Lie-B¨acklund approach to equivalence and flatness of nonlinear systems', IEEE Trans. Automat. Control, Vol. 44, pp. 922-937.
    • Fliess, M., L´evine, J., and Rouchon, P. (1993) 'Generalized state variable representation for a simplified crane description', Int. J. Control, Vol. 58, pp. 277-283.
    • Fliess, M., Marquez, R., Delaleau, E., and SiraRam´irez, H. (2002) 'Correcteurs proportionnelsint´egraux g´en´eralis´es', ESAIM Control Optim. Calc. Variat., Vol. 7, pp. 23-41.
    • Fliess, M., and Hasler M. (1990) 'Questioning the classical state space description via circuit examples', in M. Kashoek, J. van Schuppen and A. Ran (Eds.): Realization and Modelling in System Theory, MTNS-89, Vol 1, pp. 1-12, Birkh¨auser.
    • Fliess, M. (2006) 'Analyse non standard du bruit', C.R. Fliess, M., and Rudolph, J. (1997) 'Corps de Hardy Acad. Sci. Paris Ser. I, Vol. 342, pp. 797-802. et observateurs asymptotiques Iocaux pour syst`emes diff´erentiellement plats', C.R. Acad. Sci. Paris Ser. II, Vol. 324, pp. 513-519.
    • Fliess, M., and Sira-Ram´ırez, H. (2003) 'An algebraic framework for linear identification', ESAIM Control Optim. Calc. Variat., Vol. 9, pp. 151-168.
    • Fliess, M., and Sira-Ram´ırez, H. (2004a) 'Reconstructeurs d'´etat', C.R. Acad. Sci. Paris Ser. I, Vol. 338, pp. 91-96.
    • Fliess, M., Join, C., Mboup, M., and Sira-Ram´ırez, H. (2005) 'Analyse et repr´esentation de signaux transitoires : application a` la compression, au d´ebruitage et `a la d´etection de ruptures', Actes 20e Coll. GRETSI, Louvain-la-Neuve (available at http://hal.inria.fr/inria-00001115).
    • Fliess, M., Join, C., and Sira-Ram´ırez, H. (2004) 'Robust residual generation for linear fault diagnosis: an algebraic setting with examples', Int. J. Control, Vol. 77, pp. 1223-1242.
    • Garc´ıa-Rodr´ıguez, C., and Sira-Ram´ırez, H. (2005) 'Trajectory tracking via algebraic methods for state estimation', in Proc. 3rd IEEE Int. Congress Innovation Technological Develop., Cuernavaca, Mexico.
    • Gauthier, J.-P, and Kupka, I.A.K. (2001) Deterministic Observation Theory and Applications, Cambridge University Press.
    • Gertler, J.J. (1998) Fault Detection and Diagnosis in Engineering Systems, Marcel Dekker.
    • Fliess, M., Join, C., and Sira-Ram´ırez, H. (2005) 'Closedloop fault-tolerant control for uncertain nonlinear sys- Glad, S.T. (2006) 'Using differential algebra to determine tems', in T. Meurer, K. Graichen, E.D. Gilles (Eds.): the structure of control systems', in B. Hanzon and M. Control and Observer Design for Nonlinear Finite and Hazewinkel (Eds.): Constructive Algebra and Systems Infinite Dimensional Systems, Lect. Notes Control In- Theory, Royal Netherlands Academy of Arts and Sciformat. Sci., vol. 322, pp. 217-233, Springer. ences, pp. 323-340.
    • Hartshorne, R. (1977) Algebraic Geometry, Springer.
    • Hermann, R., and Krener, A.J. (1977) 'Nonlinear controllability and observability', IEEE Trans. Automat. Control, Vol. 22, pp. 728-740.
    • Ibrir, S. (2003) 'Online exact differentiation and notion of asymptotic algebraic observers', IEEE Trans. Automat. Control, Vol. 48, pp. 2055-2060.
    • Ibrir, S. (2004) 'Linear time-derivatives trackers', Automatica, Vol. 40, pp. 397-405.
    • Ibrir, S., and Diop, S. (2004) 'A numerical procedure for filtering and efficient high-order signal differentiation', Int. J. Appl. Math. Comput. Sci., Vol. 14, pp. 201-208.
    • Isidori, A. (1995) Nonlinear Control Systems, 3rd ed., Springer.
    • Jaulin, L., Kieffer, M., Didrit, O., and Walter, E. (2001) Applied Interval Analysis, Springer.
    • Johnson J. (1969) 'K¨ahler differentials and differential algebra', Annals Math. Vol. 89, pp. 92-98.
    • Martin, P., and Rouchon, P. (1994) 'Feedback linearization and driftless systems', Math. Control Signal Syst., Vol. 7, pp. 235-254, 1994.
    • Martin, P., and Rouchon, P. (1995) 'Any (controllable) driftless system with 3 inputs and 5 states is flat', Systems Control Lett., Vol. 25, pp. 167-173.
    • Martinez-Guerre, R., and Diop, S. (2004) 'Diagnosis of nonlinear systems using an unknown-input observer: an algebraic and differential approach', IEE Proc. Control Theory Applications, Vol. 151, pp. 130-135.
    • Mart´ınez-Guerra, R., Gonz´alez-Galan, R., LuvianoJu´arez, A., and Cruz-Victoria, J. (2007) 'Diagnosis for a class of non-differentially flat and Liouvillian systems', IMA J. Math. Control. Informat., Vol. 24.
    • Mboup, M., Join, C., and Fliess, M. (2007) 'A revised look at numerical differentiation with an application to nonlinear feedback control', Proc. 15th Mediterrean Conf. Control Automation (MED'2007), Athens (available at http://hal.inria.fr/inria-00142588).
    • Mikusinski, J., and Boehme, T. (1987) Operational Calculus, 2nd ed., Vol. 2, PWN & Pergamon.
    • van Nieuwstadt, M., Rathinam, M., and Murray, R.M. (1998) 'Differential flatness and absolute equivalence of nonlinear control systems', SIAM J. Control Optimiz., Vol. 36, pp. 1225-1239.
    • Nijmeijer, H., and van der Schaft, A.J. (1990) Nonlinear Dynamical Control Systems, Springer.
    • Ollivier, F. (1990) Le probl`eme de l'identifiabilit´e structurelle globale : approche th´eorique, m´ethodes effectives et bornes de complexit´e, Th`ese, E´cole Polytechnique, Palaiseau, France.
    • Ollivier, F., and Sedoglavic, A. (2002) 'Algorithmes efficaces pour tester l'identifiabilit´e locale', Actes Conf. Int. Francoph. Automatique (CIFA 2002), Nantes.
    • Kolchin, E.R. (1973) Differential Algebra and Algebraic Groups, Academic Press.
    • Lamnabhi-Lagarrigue, F., and Rouchon P. (Eds.) (2002a) Syst`emes non lin´eaires, Herm`es.
    • Lamnabhi-Lagarrigue, F., and Rouchon P. (Eds.) (2002b) Commandes non lin´eaires, Herm`es.
    • Levant, A. (1998) 'Robust exact differentiation via sliding mode technique', Automatica, Vol. 34, pp. 379-384.
    • Li, M., Chiasson, J., Bodson, M., and Tolbert, L.M. (2006) 'A differential-algebraic approach to speed estimation in an induction motor', IEEE Trans. Automat. Control, Vol. 51, pp. 1172-1177.
    • Mai, P., Join, C., and Reger, J. (2007) 'Flatness-based fault tolerant control of a nonlinear MIMO system using algebraic derivative estimation', Proc. 3rd IFAC Symp. System Structure Control (SSSC07), Foz do Iguac¸u, Brazil.
    • Pomet, J.-B. (1997) 'On dynamic feedback linearization of Yosida, K. (1984) Operational Calculus: A Theory of Hyfour-dimensional affine control systems with two inputs', perfunctions (translated from the Japanese), Springer. ESAIM Control Optimis. Calculus Variat., Vol. 2, pp. 151-230.
    • Zhang, Q., Basseville, M., and Benveniste, A. (1998) 'Fault detection and isolation in nonlinear dynamic systems: a combined input-output and local approach', Automatica, Vol. 34, pp. 1359-1373.
    • Zinober, A., and Owens, D.H. (Eds.) (2002) Nonlinear and Adaptive Control, Lect. Notes Control Informat. Sci., Vol. 281, Springer.
    • Reger, J., Mai, P., and Sira Ram´ırez, H. (2006) 'Robust algebraic state estimation of chaotic systems', Proc. IEEE 2006 CCA/CACSD/ISIC, Munich.
    • Ritt, J.F. (1950) Differential Algebra, American Mathematical Society.
    • Rudolph, J. (2003) Beitra¨ge zur flacheitsbasierten Folgeregelung linearer und nichtlinearer Syteme endlicher und undendlicher Dimension, Shaker Verlag.
    • Rudolph, J., and Delaleau, E. (1998) 'Some examples and remarks on quasi-static feedback of generalized states', Automatica, Vol. 34, pp. 993-999.
    • Saccomania, M.P., Audoly, S., D'Angio, L. (2003) 'Parameter identifiability of nonlinear systems: the role of initial conditions', Automatica, Vol. 39, pp. 619-632.
    • Sastry, S. (1999) Nonlinear Systems, Springer.
    • Schweppe, F.C. (1973) Uncertain Dynamic Systems, Prentice Hall.
    • Sedoglavic, A. (2002) 'A probabilistic algorithm to test local algebraic observability in polynomial time', J. Symbolic Computation, Vol. 33, pp. 735-755.
    • Sira-Ram´ırez, H., and Agrawal, S.K. (2004) Differentially Flat Systems, Marcel Dekker.
    • Sira-Ram´ırez, H., and Fliess, M. (2006) 'An algebraic state estimation approach for the recovery of chaotically encrypted messages', Int. J. Bifurcation Chaos, Vol. 16, pp. 295-309.
    • Slotine, J.J. (1991) Applied Nonlinear Control, Prentice Hall.
    • Smolin, L. (2006) The Trouble with Physics - The Rise of String Theory, the Fall of Science, and What Comes Next, Houghton Mifflin.
    • Sontag, E.D. (1998) Mathematical Control Theory, 2nd ed., Springer.
    • Staroswiecki, M., and Comtet-Varga, G. (2001) 'Analytic redundancy for fault detection and isolation in algebraic dynamic system', Automatica, Vol. 37, pp. 687699.
    • Su, Y.X., Zheng, C.H., Mueller, P.C., and Duan, B.Y. (2006) 'A simple improved velocity estimation for lowspeed regions based on position measurements only', IEEE Trans. Control Systems Technology, Vol. 14, pp. 937-942.
    • Vachtsevanos, G., Lewis, F.L., Roemer, M., Hess, A., and Wu, B. (2006) Intelligent Fault Diagnosis and Prognosis for Engineering Systems, Wiley.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article