LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Jan, Sana Ullah; Lee, Young-Doo; Koo, Insoo (2015)
Publisher: Hindawi Publishing Corporation
Journal: Journal of Sensors
Languages: English
Types: Article
Subjects: Technology (General), T1-995, Article Subject

Classified by OpenAIRE into

ACM Ref: ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION
Visible Light Communication (VLC) uses an Intensity-Modulation and Direct-Detection (IM/DD) scheme to transmit data. However, the light source used in VLC systems is continuously switched on and off quickly, resulting in flickering. In addition, recent illumination systems include dimming support to allow users to dim the light sources to the desired level. Therefore, the modulation scheme for data transmission in VLC system must include flicker mitigation and dimming control capabilities. In this paper, the authors propose a Double Inverse Pulse Position Modulation (DIPPM) scheme that minimizes flickering and supports a high level of dimming for the illumination sources in VLC systems. To form DIPPM, some changes are made in the symbol structure of the IPPM scheme, and a detailed explanation and mathematical model of DIPPM are given in this paper. Furthermore, both analytical and simulation results for the error performance of 2-DIPPM are compared with the performance of VPPM. Also, the communication performance of DIPPM is analyzed in terms of the normalized required power.

Share - Bookmark

Cite this article