Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Hajduk, Joanna; Klupczynska, Agnieszka; Dereziński, Paweł; Matysiak, Jan; Kokot, Piotr; Nowak, Dorota M.; Gajęcka, Marzena; Nowak-Markwitz, Ewa; Kokot, Zenon J. (2015)
Publisher: MDPI
Journal: International Journal of Molecular Sciences
Languages: English
Types: Article
Subjects: Chemistry, chemometric analysis, combined metabolomic and proteomic approach, QD1-999, mass spectrometry, gestational diabetes mellitus, Biology (General), Article, QH301-705.5
The aim of this pilot study was to apply a novel combined metabolomic and proteomic approach in analysis of gestational diabetes mellitus. The investigation was performed with plasma samples derived from pregnant women with diagnosed gestational diabetes mellitus (n = 18) and a matched control group (n = 13). The mass spectrometry-based analyses allowed to determine 42 free amino acids and low molecular-weight peptide profiles. Different expressions of several peptides and altered amino acid profiles were observed in the analyzed groups. The combination of proteomic and metabolomic data allowed obtaining the model with a high discriminatory power, where amino acids ethanolamine, l-citrulline, l-asparagine, and peptide ions with m/z 1488.59; 4111.89 and 2913.15 had the highest contribution to the model. The sensitivity (94.44%) and specificity (84.62%), as well as the total group membership classification value (90.32%) calculated from the post hoc classification matrix of a joint model were the highest when compared with a single analysis of either amino acid levels or peptide ion intensities. The obtained results indicated a high potential of integration of proteomic and metabolomics analysis regardless the sample size. This promising approach together with clinical evaluation of the subjects can also be used in the study of other diseases.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • N. Engl. J. Med. 2009, 361, 1339-1348. [CrossRef] [PubMed] 10. Lain, K.Y.; Daftary, A.R.; Ness, R.B.; Roberts, J.M. First trimester adipocytokine concentrations and risk 11. Thadhani, R.; Powe, C.E.; Tjoa, M.L.; Khankin, E.; Ye, J.; Ecker, J.; Schneyer, A.; Karumanchi, S.A.
    • First-trimester follistatin-like-3 levels in pregnancies complicated by subsequent gestational diabetes mellitus. Diabetes Care 2010, 33, 664-669. [CrossRef] [PubMed] 12. Thadhani, R.; Wolf, M.; Hsu-Blatman, K.; Sandler, L.; Nathan, D.; Ecker, J.L. First-trimester sex hormone binding globulin and subsequent gestational diabetes mellitus. Am. J. Obstet. Gynecol. 2003, 189, 171-176.
    • [CrossRef] [PubMed] 13. Spencer, K.; Yu, C.K.H.; Rembouskos, G.; Bindra, R.; Nicolaides, K.H. First trimester sex hormone-binding globulin and subsequent development of preeclampsia or other adverse pregnancy outcomes.
    • Hypertens. Pregnancy 2005, 24, 303-311. [CrossRef] [PubMed] 14. Nanda, S.; Savvidou, M.; Syngelaki, A.; Akolekar, R.; Nicolaides, K.H. Prediction of gestational diabetes mellitus by maternal factors and biomarkers at 11 to 13 weeks. Prenat. Diagn. 2011, 31, 135-141. [CrossRef] [PubMed] 15. Kim, S.M.; Park, J.S.; Norwitz, E.R.; Lee, S.M.; Kim, B.J.; Park, C.W.; Jun, J.K.; Kim, C.W.; Syn, H.C.
    • Identification of proteomic biomarkers in maternal plasma in the early second trimester that predict the subsequent development of gestational diabetes. Reprod. Sci. 2012, 19, 202-209. [CrossRef] [PubMed] 16. Liu, B.; Xu, Y.; Voss, C.; Qiu, F.H.; Zhao, M.Z.; Liu, Y.D.; Nie, J.; Wang, Z.L. Altered protein expression in gestational diabetes mellitus placentas provides insight into insulin resistance and coagulation/fibrinolysis pathways. PLoS ONE 2012, 7, e44701. [CrossRef] [PubMed] 17. Marroqui, L.; Alonso-Magdalena, P.; Merino, B.; Fuentes, E.; Nadal, A.; Quesada, I. Nutrient regulation of glucagon secretion: Involvement in metabolism and diabetes. Nutr. Res. Rev. 2014, 27, 48-62. [CrossRef] [PubMed] 18. Newsholme, P.; Cruzat, V.; Arfuso, F.; Keane, K. Nutrient regulation of insulin secretion and action.
    • J. Endocrinol. 2014, 221, R105-R120. [CrossRef] [PubMed] 19. Wang, T.J.; Larson, M.G.; Vasan, R.S.; Cheng, S.; Rhee, E.P.; McCabe, E.; Lewis, G.D.; Fox, C.S.; Jacques, P.F.; Fernandez, C.; et al. Metabolite profiles and the risk of developing diabetes. Nat. Med. 2011, 17, 448-453.
    • [CrossRef] [PubMed] 20. Cetin, I.; de Santis, M.S.; Taricco, E.; Radaelli, T.; Teng, C.; Ronzoni, S.; Spada, E.; Milani, S.; Pardi, G.
    • Maternal and fetal amino acid concentrations in normal pregnancies and in pregnancies with gestational diabetes mellitus. Am. J. Obstet. Gynecol. 2005, 192, 610-617. [CrossRef] [PubMed] 21. Kalkhoff, R.K.; Kandaraki, E.; Morrow, P.G.; Mitchell, T.H.; Kelber, S.; Borkowf, H.I. Relationship between neonatal birth-weight and maternal plasma amino-acid profiles in lean and obese nondiabetic women and in type-I diabetic pregnant-women. Metabolism 1988, 37, 234-239. [CrossRef] 22. Mochida, T.; Tanaka, T.; Shiraki, Y.; Tajiri, H.; Matsumoto, S.; Shimbo, K.; Ando, T.; Nakamura, K.; Okamoto, M.; Endo, F. Time-dependent changes in the plasma amino acid concentration in diabetes mellitus. Mol. Genet. Metab. 2011, 103, 406-409. [CrossRef] [PubMed] 23. Friedrich, N. Metabolomics in diabetes research. J. Endocrinol. 2012, 215, 29-42. [CrossRef] [PubMed] 24. De Luca, G.; Calpona, P.R.; Caponetti, A.; Macaione, V.; di Benedetto, A.; Cucinotta, D.; di Giorgio, R.M.
    • Preliminary report-Amino acid profile in platelets of diabetic patients. Metabolism 2001, 50, 739-741.
    • [CrossRef] [PubMed] 25. Murri, M.; Insenser, M.; Bernal-Lopez, M.R.; Perez-Martinez, P.; Escobar-Morreale, H.F.; Tinahones, F.J.
    • Proteomic analysis of visceral adipose tissue in pre-obese patients with type 2 diabetes.
    • Mol. Cell. Endocrinol. 2013, 376, 99-106. [CrossRef] [PubMed] 26. Wender-Ozegowska, E.; Bomba-Opon, D.; Brazert, J.; Celewicz, Z.; Czajkowski, K.; Karowicz-Bilinska, A.; Malinowska-Polubiec, A.; Meczekalski, B.; Zawiejska, A. Polish Gynecological Society. Polish gynecological society standards of medical care in management of women with diabetes. Ginekol. Pol.
    • 2011, 82, 474-479. [PubMed] 27. Butte, N.F.; Hsu, H.W.; Thotathuchery, M.; Wong, W.W.; Khoury, J.; Reeds, P. Protein metabolism in insulin-treated gestational diabetes. Diabetes Care 1999, 22, 806-811. [CrossRef] [PubMed] 28. Matysiak, J.; Derezinski, P.; Klupczynska, A.; Matysiak, J.; Kaczmarek, E.; Kokot, Z.J. Effects of a honeybee sting on the serum free amino acid profile in humans. PLoS ONE 2014, 9, e103533.
    • 29. Gibb, S.; Strimmer, K. Maldiquant: A versatile R package for the analysis of mass spectrometry data.
    • Bioinformatics 2012, 28, 2270-2271. [CrossRef] [PubMed]
  • No similar publications.

Share - Bookmark

Cite this article