LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Chen, Ching-Pei; Chen, Jing-Yi; Huang, Chun-Kai; Lu, Jau-Ching; Lin, Pei-Chun (2015)
Publisher: MDPI
Journal: Sensors (Basel, Switzerland)
Languages: English
Types: Article
Subjects: extended Kalman filter, TP1-1185, sensor fusion, Chemical technology, body state estimator, bipedal robot, ZMP, preview control, Article

Classified by OpenAIRE into

arxiv: Computer Science::Robotics
We report on a sensor data fusion algorithm via an extended Kalman filter for estimating the spatial motion of a bipedal robot. Through fusing the sensory information from joint encoders, a 6-axis inertial measurement unit and a 2-axis inclinometer, the robot’s body state at a specific fixed position can be yielded. This position is also equal to the CoM when the robot is in the standing posture suggested by the detailed CAD model of the robot. In addition, this body state is further utilized to provide sensory information for feedback control on a bipedal robot with walking gait. The overall control strategy includes the proposed body state estimator as well as the damping controller, which regulates the body position state of the robot in real-time based on instant and historical position tracking errors. Moreover, a posture corrector for reducing unwanted torque during motion is addressed. The body state estimator and the feedback control structure are implemented in a child-size bipedal robot and the performance is experimentally evaluated.

Share - Bookmark

Cite this article