LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Smolkin, Mark; Ghosh, Debashis (2003)
Publisher: BioMed Central
Journal: BMC Bioinformatics
Languages: English
Types: Article
Subjects: R858-859.7, Methodology Article, Computer applications to medicine. Medical informatics, Biology (General), QH301-705.5

Abstract

Background

A potential benefit of profiling of tissue samples using microarrays is the generation of molecular fingerprints that will define subtypes of disease. Hierarchical clustering has been the primary analytical tool used to define disease subtypes from microarray experiments in cancer settings. Assessing cluster reliability poses a major complication in analyzing output from clustering procedures. While most work has focused on estimating the number of clusters in a dataset, the question of stability of individual-level clusters has not been addressed.

Results

We address this problem by developing cluster stability scores using subsampling techniques. These scores exploit the redundancy in biologically discriminatory information on the chip. Our approach is generic and can be used with any clustering method. We propose procedures for calculating cluster stability scores for situations involving both known and unknown numbers of clusters. We also develop cluster-size adjusted stability scores. The method is illustrated by application to data three cancer studies; one involving childhood cancers, the second involving B-cell lymphoma, and the final is from a malignant melanoma study.

Availability

Code implementing the proposed analytic method can be obtained at the second author's website.

Share - Bookmark

Cite this article

Collected from