LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Mahou, Redouan; Meier, Raphael P. H.; Bühler, Léo H.; Wandrey, Christine (2014)
Publisher: MDPI
Journal: Materials
Languages: English
Types: Article
Subjects: alginate, QC120-168.85, cell encapsulation, biocompatibility, Engineering (General). Civil engineering (General), Technology, Article, TA1-2040, cell transplantation, poly(ethylene glycol), T, hydrogel, microencapsulation, Electrical engineering. Electronics. Nuclear engineering, TK1-9971, Microscopy, QH201-278.5, Descriptive and experimental mechanics

Classified by OpenAIRE into

mesheuropmc: technology, industry, and agriculture
The progress of medical therapies, which rely on the transplantation of microencapsulated living cells, depends on the quality of the encapsulating material. Such material has to be biocompatible, and the microencapsulation process must be simple and not harm the cells. Alginate-poly(ethylene glycol) hybrid microspheres (alg-PEG-M) were produced by combining ionotropic gelation of sodium alginate (Na-alg) using calcium ions with covalent crosslinking of vinyl sulfone-terminated multi-arm poly(ethylene glycol) (PEG-VS). In a one-step microsphere formation process, fast ionotropic gelation yields spherical calcium alginate gel beads, which serve as a matrix for simultaneously but slowly occurring covalent cross-linking of the PEG-VS molecules. The feasibility of cell microencapsulation was studied using primary human foreskin fibroblasts (EDX cells) as a model. The use of cell culture media as polymer solvent, gelation bath, and storage medium did not negatively affect the alg-PEG-M properties. Microencapsulated EDX cells maintained their viability and proliferated. This study demonstrates the feasibility of primary cell microencapsulation within the novel microsphere type alg-PEG-M, serves as reference for future therapy development, and confirms the suitability of EDX cells as control model.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Bonavita, A.G.; Quaresma, K.; Cotta-de-Almeida, V.; Pinto, M.A.; Saraiva, R.M.; Alves, L.A. Hepatocyte xenotransplantation for treating liver disease. Xenotransplantation 2010, 17, 181-187.
    • 2. Paul, A.; Ge, Y.; Prakash, S.; Shum-Tim, D. Microencapsulated stem cells for tissue repairing: Implications in cell-based myocardial therapy. Regener. Med. 2009, 4, 733-745.
    • 3. De Vos, P.; Faas, M.M.; Strand, B.; Calafiore, R. Alginate-based microcapsules for immunoisolation of pancreatic islets. Biomaterials 2006, 27, 5603-5617.
    • 4. Hernández, R.M.; Orive, G.; Murara, A.; Pedraz, J.L. Microcapsules and microcarriers for in situ cell delivery. Adv. Drug Deliv. Rev. 2010, 62, 711-730.
    • 5. Rokstad, A.M.; Brekke, O.L.; Steinkjer, B.; Ryan, L.; Kolláriková, G.; Strand, B.L.; Skjåk-Braek, G.; Lacik, I.; Espevik, T.; Mollnes, T.E. Alginate microbeads are complement compatible, in contrast to polycation containing microcapsules, as revealed in a human whole blood model. Acta Biomater. 2011, 7, 2566-2578.
    • 6. Rokstad, A.M.; Brekke, O.L.; Steinkjer, B.; Ryan, L.; Kolláriková, G.; Strand, B.L.; Skjåk-Braek, G.; Lambris, J.D.; Lacik, I.; Mollnes, T.E.; et al. The induction of cytokines by polycation containing microspheres by a complement dependent mechanism. Biomaterials 2013, 34, 621-630.
    • 7. Moyer, H.R.; Kinney, R.C.; Singh, K.A.; Williams, J.K.; Schwartz, Z.; Boyan, B.D. Alginate microencapsulation technology for the percutaneous delivery of adipose-derived stem cells. Ann. Plast. Surg. 2010, 65, 497-503.
    • 8. Malpique, R.; Osorio, L.M.; Ferreira, D.S.; Ehrhart, F.; Brito, C.; Zimmermann, H.; Alves, P.M.; Alginate encapsulation as a novel strategy for the cryopreservation of neurospheres. Tissue Eng. Methods 2010, 16, 965-977.
    • 9. Park, H.S.; Ham, D.S.; You, Y.H.; Shin, J.; Kim, J.W; Jo, J.H; Kim, O.Y.; Khang, G.; Yoon, K.H. Successful xenogenic islet transplantation with Ba2+-Alginate encapsulation. Tissue Eng. Regen. Med. 2010, 7, 523-530.
    • 10. Penolazzi, L.; Tavanti, E.; Vecchiatini, R.; Lambertini, E.; Vesce, F.; Gambari, R.; Mazzitelli, S.; Mancuso, F.; Luca, G.; Nastruzzi, C.; et al. Encapsulation of mesenchymal stem cells from Wharton's Jelly in alginate microbeads. Tissue Eng. Methods 2010, 16, 141-155.
    • 11. Endres, M.; Wenda, N.; Woehlecke, H.; Neumann, K.; Ringe, J.; Erggelet, C.; Lerche, D.; Kaps, C. Microencapsulation and chondrogenic differentiation of human mesenchymal progenitor cells from subchondral bone marrow in Ca-alginate for cell injection. Acta Biomater. 2010, 6, 436-444.
    • 12. Cui, H.; Tucker-Burden, C.; Cauffield, S.M.D.; Barry, A.K.; Iwakoshi, N.N.; Weber, C.J.; Safley, S.A. Long-term metabolic control of autoimmune diabetes in spontaneously diabetic nonobese diabetic mice by nonvascularized microencapsulated adult porcine islets. Transplantation 2009, 88, 160-169.
    • 13. Dang, T.T.; Thai, A.V.; Cohen, J.; Slosberg, J.E.; Siniakowicz, K.; Doloff, J.C.; Ma, M.; Hollister-Lock, J.; Tang, K.M.; Gu, Z.; et al. Enhanced function of immuno-isolated islets in diabetes therapy by co-encapsulation with an anti-inflammatory drug. Biomaterials 2013, 34, 5792-5801.
    • 14. Giovagnoli, S.; Blasi, P.; Luca, G.; Fallarino, F.; Calvitti, M.; Mancuso, F.; Ricci, M.; Basta, G.; Becchetti, E.; Rossi, C.; et al. Bioactive long-term release from biodegradable microspheres preserves implanted ALG-PLO-ALG microcapsules from in vivo response to purified alginate. Pharm. Res. 2010, 27, 285-295.
    • 15. De Castro, M.; Orive, G.; Hernández, R.M.; Bartkowiak, A.; Brylak, W.; Pedraz, J.L. Biocompatibility and in vivo evaluation of oligochitosans as cationic modifiers of alginate/Ca microcapsules. J. Biomed. Mater. Res. 2009, 91, 1119-1130.
    • 16. Babister, C.; Tare, R.S.; Green, D.W.; Inglis, S.; Mann, S. Genetic manipulation of humanmesenchymal progenitors to promote chondrogenesis using “bead-in-bead” polysaccharide capsules. Biomaterials 2008, 29, 58-65.
    • 17. Baruch, L.; Machluf, M. Alginate-chitosan complex coacervation for cell encapsulation: Effect on mechanical properties and on long-term viability. Biopolymers 2006, 82, 570-579.
    • 18. Yu, C.B.; Lv, G.L.; Pan, X.P.; Chen, Y.S.; Cao, H.C.; Zhang, Y.M.; Du, W.B.; Yang, S.G.; Li, L.J. In vitro large-scale cultivation and evaluation of microencapsulated immortalized human hepatocytes (HepLL) in roller bottles. Int. J. Artif. Organs 2009, 32, 272-281.
    • 19. Luna, S.M.; Gomes, M.E.; Mano, J.F.; Reis, R.L. Development of a novel cell encapsulation system based on natural origin polymers for tissue engineering applications. J. Bioact. Compat. Pol. 2010, 25, 341-359.
    • 20. Mazumder, M.A.J.; Burke, N.A.D.; Shen, F.; Potter, M.A.; Stöver, H.D.H. Core crosslinked alginate microcapsules for cell encapsulation. Biomacromolecules 2009, 10, 1365-1373.
    • 21. Gardner, C.M.; Burke, N.A.D; Stöver, H.D.H. Cross-linked microcapsules formed from self-deactivating reactive polyelectrolytes. Langmuir 2010, 26, 4916-4924.
    • 22. Gardner, C.M.; Potter, M.A.; Stöver, H.D.H. Improving covalent cell encapsulation with temporarily reactive polyelectrolytes. J. Mater. Sci. Mater. Med. 2012, 23, 181-193.
    • 23. Rokstad, A.M.; Brekke, O.L.; Steinkjer, B.; Ryan, L.; Kolláriková, G.; Lambris, J.D.; Lacik, I.; Mollnes, T.E.; Espevik, T. Poly-cation containing alginate microcapsules induce cytokines by a complement-dependent mechanism. Immunobiology 2012, 217, 1221-1221.
    • 24. Luan, N.M.; Teramura, Y.; Iwata, H. Immobilization of the soluble domain of human complement receptor 1 on agarose-encapsulated islets for the prevention of complement activation. Biomaterials 2010, 31, 8847-8853.
    • 25. Stiegler, P.; Matzi, V.; Pierer, E.; Hauser, O.; Schaffellner, S.; Renner, H.; Greilberger, J.; Aigner, R.; Maier, A.; Lackner, C.; et al. Creation of a prevascularized site for cell transplantation in rats. Xenotransplantation 2010, 17, 379-390.
    • 26. Wells, L.A.; Sheardown, H. Photosensitive controlled release with polyethylene glycol-anthracene modified alginate. Eur. J. Pharm. Biopharm. 2011, 79, 304-313.
    • 27. Davidovich-Pinhas, M.; Bianco-Peled, H. Physical and structural characteristics of acrylatedpoly(ethylene glycol)-alginate conjugates. Acta Biomater. 2011, 7, 2817-2825.
    • 28. Yang, J.S.; Xie, Y.J.; He, W. Research progress on chemical modification of alginate: A review. Carbohydr. Polym. 2011, 84, 33-39.
    • 29. Hall, K.K.; Gattás-Asfura, K.M.; Stabler, C.L. Microencapsulation of islets within alginate/poly(ethylene glycol) gels cross-linked via Staudinger ligation. Acta Biomater. 2011, 7, 614-624.
    • 30. Mahou, R.; Wandrey, C. Alginate-poly(ethylene glycol) hybrid microspheres with adjustable physical properties. Macromolecules 2010, 43, 1371-1378.
    • 31. Mahou, R.; Kolláriková, G.; Gonelle-Gispert, C.; Meier, R.; Schmitt, F.; Tran, N.M.; Dufresne, M.; Lacik, I.; Bühler, L.; Juillerat-Jeanneret, L.; et al. Combined electrostatic and covalent polymer networks for cell microencapsulation. Macromol. Symp. 2013, 329, 49-57.
    • 32. Nanchahal, J.; Dover, R.; Otto, W.R. Allogeneic skin substitutes applied to burns patients. Burns 2002, 28, 254-257.
    • 33. Falanga, V.; Margolis, D.; Alvarez, O.; Auletta, M.; Maggiacomo, F.; Altman, M.; Jensen, J.; Sabolinski, M.; Hardin-Young, J. Rapid healing of venous ulcers and lack of clinical rejection with an allogeneic cultured human skin equivalent. Arch. Dermatol. 1998, 34, 293-300.
    • 34. Yonezawa, M.; Tanizaki, H.; Inoguchi, N.; Ishida, M.; Katoh, M.; Tachibana, T.; Miyachi, Y.; Kubo, K.; Kuroyanagi, Y. Clinical study with allogeneic cultured dermal substitutes for chronic leg ulcers. Int. J. Dermatol. 2007, 46, 36-42.
    • 35. Wada, N.; Bartold, P.M.; Gronthos, S. Human foreskin fibroblasts exert immunomodulatory properties by a different mechanism to bone marrow mesenchymal stem cells. Stem Cells Dev. 2011, 20, 647-659.
    • 36. Ceausoglu, I.; Hunkeler, D. A new microencapsulation device for controlled membrane and capsule size distributions. J. Microencapsul. 2002, 19, 725-735.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok