LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Taguchi, S.; Law, R.; Rödenbeck, C.; Patra, P.; Maksyutov, S.; Zahorowski, W.; Sartorius, H.; Levin, I. (2011)
Publisher: Copernicus Publications
Languages: English
Types: 0038
Subjects: Chemistry, QD1-999, Physics, QC1-999
Fourteen global atmospheric transport models were evaluated by comparing the simulation of 222Rn against measurements at three continental stations in Germany: Heidelberg, Freiburg and Schauinsland. Hourly concentrations simulated by the models using a common 222Rn-flux without temporal variations were investigated for 2002 and 2003. We found that the mean simulated concentrations in Heidelberg are related to the diurnal amplitude of boundary layer height in each model. Summer mean concentrations simulated by individual models were negatively correlated with the seasonal mean of diurnal amplitude of boundary layer height, while in winter the correlation was positive. We also found that the correlations between simulated and measured concentrations at Schauinsland were higher when the simulated concentrations were interpolated to the station altitude in most models. Temporal variations of the mismatch between simulated and measured concentrations suggest that there are significant interannual variations in the 222Rn exhalation rate in this region. We found that the local inversion layer during daytime in summer in Freiburg has a significant effect on 222Rn concentrations. We recommend Freiburg concentrations for validation of models that resolve local stable layers and those at Heidelberg for models without this capability.

Share - Bookmark

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok