Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Fieker , Claus; Hart , William; Hofmann , Tommy; Johansson , Fredrik (2017)
Publisher: HAL CCSD
Languages: English
Types: Conference object
Subjects: [ MATH.MATH-NT ] Mathematics [math]/Number Theory [math.NT], Computer Science - Mathematical Software, Computer Science - Symbolic Computation, [ INFO.INFO-MS ] Computer Science [cs]/Mathematical Software [cs.MS], [ INFO.INFO-SC ] Computer Science [cs]/Symbolic Computation [cs.SC]
International audience; We introduce two new packages, Nemo and Hecke, written in the Julia programming language for computer algebra and number theory. We demonstrate that high performance generic algorithms can be implemented in Julia, without the need to resort to a low-level C implementation. For specialised algorithms, we use Julia's efficient native C interface to wrap existing C/C++ libraries such as Flint, Arb, Antic and Singular. We give examples of how to use Hecke and Nemo and discuss some algorithms that we have implemented to provide high performance basic arithmetic.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] E. Bach, Improved approximations for Euler products, Number theory (Halifax, NS, 1994), vol. 15, CMS Conference Proceedings, pages 13-28. Amer. Math. Soc., Providence, RI, 1995.
    • [2] K. Belabas, Topics in computational algebraic number theory, J. Théor. Nombres Bordeaux, 16(1):19-63, 2004.
    • [3] K. Belabas, E. Friedman. Computing the residue of the Dedekind zeta function, Math. Comp., 84(291):357-369, 2015.
    • [4] J. Bezanson, A. Edelman, S. Karpinski, V. B. Shah, Julia: A fresh approach to numerical computing, https://arxiv.org/abs/1411.1607
    • [5] J.-F. Biasse, C. Fieker, Subexponential class group and unit group computation in large degree number fields , LMS J. Comput. Math., 17(suppl. A):385-403, 2014.
    • [6] W. Bosma, J. J. Cannon, C. Fieker, A. Steel (Eds.), Handbook of Magma Functions, Edition 2.22 (2016).
    • [7] W. Brown, Null ideals and spanning ranks of matrices, Comm. Algebra 26, (1998), pp. 2401-2417.
    • [8] H. Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics, vol. 138, Springer-Verlag, Berlin, 1993.
    • [9] A. Danilevsky, The numerical solution of the secular equation, (Russian), Matem. Sbornik, 44(2), 1937. pp. 169-171.
    • [10] W. Decker, G. M. Greuel, G. Pfister and H. Schönemann, Singular - A computer algebra system for polynomial computations, http://www.singular.uni-kl.de
    • [11] E. Dobrowolski, On the maximal modulus of conjugates of an algebraic integer, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 26(4):291-292, 1978.
    • [12] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, P. Zimmermann, MPFR: A multipleprecision binary floating-point library with correct rounding , ACM Trans. Math. Soft., vol. 33, (2), 13, (2007), pp. 1-15.
    • [13] J. von zur Gathen, J. Gerhard, Modern Computer Algebra, Cambridge University Press, 1999.
    • [14] M. Giesbrecht, A. Storjohann, Computing rational forms of integer matrices. Journal of Symbolic Computation, 2002, v. 34(3), pp. 157-172.
    • [15] T. Granlund and the GMP development team, The GNU Multi Precision Arithmetic Library, http://gmplib.org/
    • [16] W. Hart, ANTIC: Algebraic Number Theory in C, Computeralgebra Rundbrief 56, Fachgruppe Computeralgebra, 2015, http://www.fachgruppe-computeralgebra. de/data/CA-Rundbrief/car56.pdf
    • [17] W. Hart, F. Johansson, S. Pancratz, FLINT: Fast Library for Number Theory, http: //www.flintlib.org
    • [18] F. Johansson, Arb: A C library for ball arithmetic, http://arblib.org
    • [19] M. Monagan, R. Pearce, Sparse polynomial division using a heap, Journal of Symbolic Computation, vol. 46, (7), July 2011, pp. 807-822.
    • [20] M. Monagan, R. Pearce, Parallel sparse polynomial multiplication using heaps, ISSAC'09, ACM Press (2009), pp. 263-269.
    • [21] M. Monagan, R. Pearce, Sparse polynomial powering using heaps, Gerdt V.P., Koepf W., Mayr E.W., Vorozhtsov E.V. (eds) Computer Algebra in Scientific Computing. CASC 2012. Lecture Notes in Computer Science, vol 7442. Springer, Berlin, Heidelberg (2012), pp. 236-247.
    • [22] PARI Group, PARI/GP version 2.9.0, Univ. Bordeaux, 2016, http://pari.math. u-bordeaux.fr/
    • [23] B. Parisse, R. De Graeve, Giac/Xcas version 1.2.2, 2016, http://www-fourier. ujf-grenoble.fr/~parisse/giac.html
    • [24] M. Pohst, H. Zassenhaus, Algorithmic algebraic number theory, Cambridge University Press, Cambridge, 1997.
    • [25] Sage Developers, SageMath, the Sage Mathematics Software System (Version 7.4), 2016, http://www.sagemath.org
    • [26] R. J. Schoof, Quadratic fields and factorization , In Computational methods in number theory, Part II, volume 155 of Math. Centre Tracts, pages 235-286. Math. Centrum, Amsterdam, 1982.
    • [27] M. Soltys, Berkowitz's algorithm and clow sequences, The Electronic Journal of Linear Algebra, Int. Linear Algebra Society, vol 9, Apr. 2002, pp. 42-54.
    • [28] A. Steel, A new algorithm for the computation of canonical forms of matrices over ifelds , J. Symbolic Computation (1997) 24, pp. 409-432.
    • [29] E. Vinberg, A Course in Algebra, American Mathematical Society, 2003, pp. 229.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects


Cite this article